Conversion of Mixed Fractions into Improper Fractions

To convert a mixed number into an improper fraction, we multiply the whole number by the denominator of the proper fraction and then to the product add the numerator of the fraction to get the numerator of the improper fraction. Its denominator is the same as the
denominator of the fractional part i.e.,

Mixed Fractions into Improper Fractions

In conversion of mixed fractions into improper fractions, we may follow the following steps:

Step I: Obtain the mixed fraction. 

Step II: Identify the whole number and the numerator (top) and denominator (bottom) of the proper fraction.


Step III: Multiply the whole number by the denominator of the proper fraction and add the result to the numerator of the proper fraction.

Step IV: Write the fraction having numerator equal to the number obtained in step III and denominator same as the denominator of the fraction in step II. Thus,

Conversion of Mixed Fractions into Improper Fractions

For Example:

1. Convert 3\(\frac{5}{6}\) into an improper fraction:

Solution:

3\(\frac{5}{6}\) = \(\frac{3 × 6 + 5}{6}\) = \(\frac{18 + 5}{6}\) = \(\frac{23}{6}\)



2. Express each of the following mixed fractions as improper fractions:

(i) Convert 8\(\frac{4}{7}\) into an improper fraction.

8\(\frac{4}{7}\) means 8 whole and \(\frac{4}{7}\).

Conversion of Mixed Fractions into Improper Fractions

                                                           \(\frac{4}{7}\)


Solution:

8\(\frac{4}{7}\) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + \(\frac{4}{7}\)

or, 8\(\frac{4}{7}\) = \(\frac{7}{7}\) + \(\frac{7}{7}\) + \(\frac{7}{7}\) + \(\frac{7}{7}\) + \(\frac{7}{7}\) + \(\frac{7}{7}\) + \(\frac{7}{7}\) + \(\frac{7}{7}\) + \(\frac{4}{7}\) = \(\frac{60}{7}\),           [\(\frac{7}{7}\) means 1)

We can also convert a mixed number into an improper fraction as follows.

First multiply the whole number by denominator. Here (8 × 7) + 4 = 60. Now, put the sum as the numerator of the required improper fraction and the denominator remains the same.

8\(\frac{4}{7}\) = \(\frac{(8 × 7) + 4}{7}\) = \(\frac{56 + 4}{7}\) = \(\frac{60}{7}\)

Thus, 8\(\frac{4}{7}\) = \(\frac{60}{7}\)


(ii) 3\(\frac{2}{7}\)

= \(\frac{(3 × 7) + 2}{7}\)

= \(\frac{21 + 2}{7}\)

= \(\frac{23}{7}\)


(iii) 4\(\frac{5}{9}\)

= \(\frac{(4 × 9) + 5}{9}\)

= \(\frac{36 + 5}{9}\)

= \(\frac{41}{9}\)

(iv) 3\(\frac{2}{5}\)

= \(\frac{(3 × 5) + 2}{5}\)

= \(\frac{15 + 2}{5}\)

= \(\frac{17}{5}\)


(v) 7\(\frac{1}{4}\)

= \(\frac{(7 × 4) + 1}{4}\)

= \(\frac{28 + 1}{4}\)

= \(\frac{29}{4}\)


Conversion of a Mixed Fraction into an Improper Fraction:

3. Let us convert 5\(\frac{4}{5}\) into an improper fraction.

Step I: Multiply the whole number 5 by the denominator 5.  [5 × 5 = 25]

Step II: Add the numerator to it.   [25 + 4 = 29]

Step III: This gives the numerator of the improper fraction.  [\(\frac{29}{7}\)]

Denominator will remain the same. So. 5\(\frac{4}{5}\) = \(\frac{29}{7}\)


Worksheet on Conversion of Mixed Fractions into Improper Fractions:

1. Convert the following into Improper Fractions:

(i) 4\(\frac{1}{3}\)

(ii) 2\(\frac{1}{2}\)

(iii) 4\(\frac{2}{3}\)

(iv) 7\(\frac{4}{9}\)

(v) 4\(\frac{5}{7}\)


Answer:

1. (i) \(\frac{13}{3}\)

(ii) \(\frac{5}{2}\)

(iii) \(\frac{14}{3}\)

(iv) \(\frac{67}{9}\)

(v) \(\frac{33}{7}\)

You might like these

Fraction

Representations of Fractions on a Number Line

Fraction as Division

Types of Fractions

Conversion of Mixed Fractions into Improper Fractions

Conversion of Improper Fractions into Mixed Fractions

Equivalent Fractions

Interesting Fact about Equivalent Fractions

Fractions in Lowest Terms

Like and Unlike Fractions

Comparing Like Fractions

Comparing Unlike Fractions

Addition and Subtraction of Like Fractions

Addition and Subtraction of Unlike Fractions

Inserting a Fraction between Two Given Fractions



Number Page

6th Grade Page

From Conversion of Mixed Fractions into Improper Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Basic Concept of Fractions | Concept of Half, OneThird | Exa

    Jan 28, 25 01:39 PM

    One-half
    Concept of fractions will help us to express different fractional parts of a whole. One-half When an article or a collection of objects is divided into two equal parts is called as half of the whole.

    Read More

  2. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Jan 28, 25 12:32 PM

    3/8 Coloured Mangoes
    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Jan 28, 25 12:14 AM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Representation of a Fraction | Numerator/Denominator | Simple Fraction

    Jan 27, 25 02:29 PM

    Representation of a Fraction
    Representation of a fraction is discussed here. In a simple fraction, there is a horizontal line. Above this line we write a number which is called the numerator. Below this line we write another numb…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Jan 27, 25 01:52 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More