Converting Decimals to Fractions

In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps:

Step I: Obtain the decimal.

Step II: Remove the decimal points from the given decimal and take as numerator.

Step III: At the same time write in the denominator, as many zero or zeros to the right of 1(one) (For example 10, 100 or 1000 etc.) as there are number of digit or digits in the decimal part. And then simplify it.

We can express a decimal number as a fraction by keeping the given number as the numerator without a decimal point and writing 1 in the denominator followed by as many zeroes on the right as the number of decimal places in the given decimal number has.

For example:                                                                           

(i) 124.6 = \(\frac{1246}{10}\)

(ii) 12.46 = \(\frac{1246}{100}\)

(iii) 1.246 = \(\frac{1246}{1000}\)


The problem will help us to understand how to convert decimal into fraction.

In 0.7 we will change the decimal to fraction.

First we will write the decimal without the decimal point as the numerator.

Now in the denominator, write 1 followed by one zeros as there are 1 digit in the decimal part of the decimal number.

Convert Decimal into Fraction




= \(\frac{7}{10}\)

Therefore, we observe that 0.7 (decimal) is converted to \(\frac{7}{10}\) (fraction).


Working Rules for Conversion of a Decimal Into a Fraction:

To convert a decimal into fraction, we follow the following steps
Working Rules

Step I: Write the given number without decimal point as the numerator of the fraction.

Step II: Write 1 in the denominator followed by as many zeros as the number of decimal places in the given number.

Step III: Reduce the fraction into the lowest terms and if required change into mixed numeral.


Solved Examples on Converting Decimals to Fractions

1. Convert 6.75 into a fraction.

Solution:

Numerator of fraction = 675

Denominator of fraction = 100 (Because decimal places are 2, therefore, put 2 zeros after 1.)

So, 6.75 = \(\frac{625}{100}\)

             = \(\frac{625 ÷ 25}{100 ÷ 25}\)

             = \(\frac{27}{4}\)

             = 6\(\frac{3}{4}\)


2. Convert 924.275 into a fraction.

Solution:

Numerator of fraction = 924275

Denomination of fraction = 1000 (Because decimal places are 3, therefore, put 3 zeros after 1.)

Now, 924.275 = \(\frac{924275}{1000}\)

                     = \(\frac{924275 ÷ 25}{1000 ÷ 25}\)

                     = \(\frac{36971}{40}\)

                     = 924\(\frac{11}{40}\)


Worked-out Examples on Converting Decimals to Fractions:


1. Convert each of the following into fractions.

(i) 3.91

Solution:

3.91

Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by two zeros as there are 2 digits in the decimal part of the decimal number.

= \(\frac{391}{100}\)


(ii) 2.017

Solution:

2.017

= \(\frac{2.017}{1}\)

= \(\frac{2.017 × 1000}{1 × 1000}\)  In the denominator, write 1 followed by three zeros as there are 3 digits in the decimal part of the decimal number.

= \(\frac{2017}{1000}\)


2. Convert 0.0035 into fraction in the simplest form.

Solution:

0.0035

Fraction in the Simplest Form






Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by four zeros to the right of 1 (one) as there are 4 decimal places in the given decimal number.

Now we will reduce the fraction \(\frac{35}{10000}\) and obtained to its lowest term or the simplest form.

= \(\frac{7}{2000}\)


3. Express the following decimals as fractions in lowest form:

(i) 0.05

Solution:

0.05

= \(\frac{5}{100}\) Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by two zeros to the right of 1 (one) as there are 2 decimal places in the given decimal number.

= \(\frac{5 ÷ 5}{100 ÷ 5}\)  Reduce the fraction obtained to its lowest term.

= \(\frac{1}{20}\)


(ii) 3.75

Solution:

3.75

= \(\frac{375}{100}\)  Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by two zeros to the right of 1 (one) as there are 2 decimal places in the given decimal number.

= \(\frac{375 ÷ 25}{100 ÷ 25}\)  Reduce the fraction obtained to its simplest form.

= \(\frac{15}{4}\)


(iii) 0.004

Solution:

0.004

= \(\frac{4}{1000}\) Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by three zeros to the right of 1 (one) as there are 3 decimal places in the given decimal number.

= \(\frac{4 ÷ 4}{1000 ÷ 4}\) ⟹ Reduce the fraction obtained to its lowest term.

= \(\frac{1}{250}\)


(iv) 5.066

Solution:

5.066

= \(\frac{5066}{1000}\)  Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by three zeros to the right of 1 (one) as there are 3 decimal places in the given decimal number.

= \(\frac{5066 ÷ 2}{1000 ÷ 2}\)  Reduce the fraction obtained to its simplest form.

= \(\frac{2533}{500}\)

Converting Decimals to Fractions


Worksheet on Converting Decimals to Fractions:

1. Convert the given decimal numbers to fractions in the lowest term:

(i) 1.3

(ii) 0.004

(iii) 4.005

(iv) 7.289

(v) 0.56

(vi) 21.08

(vii) 0.067

(viii) 6.66


Answers:

1. (i) \(\frac{13}{10}\)

(ii) \(\frac{1}{250}\)

(iii) \(\frac{801}{200}\)

(iv) \(\frac{7289}{1000}\)

(v) \(\frac{14}{25}\)

(vi) \(\frac{527}{25}\)

(vii) \(\frac{67}{1000}\)

(viii) \(\frac{333}{50}\)


2. Convert the following decimals into common fractions in the lowest terms:

(i) 0.7

(ii) 0.15

(iii) 0.085

(iv) 27.35

(v) 0.27

(vi) 2.08

(vii) 17.2

(viii) 5.005

(ix) 206.007

(x) 0.003

(xi) 71.035

(xii) 35.607


Answer:

2. (i) \(\frac{7}{10}\)

(ii) \(\frac{3}{20}\)

(iii) \(\frac{17}{200}\)

(iv) 27\(\frac{7}{20}\)

(v)\(\frac{27}{100}\)

(vi) 2\(\frac{2}{5}\)

(vii) 17\(\frac{1}{5}\)

(viii) 5\(\frac{1}{200}\)

(ix) 206\(\frac{7}{1000}\)

(x) \(\frac{3}{1000}\)

(xi) 71\(\frac{7}{200}\)

(xii) 35\(\frac{607}{1000}\)


You might like these

Related Concept

Decimals

Decimal Numbers

Decimal Fractions

Like and Unlike Decimals

Comparing Decimals

Decimal Places

Conversion of Unlike Decimals to Like Decimals

Decimal and Fractional Expansion

Terminating Decimal

Non-Terminating Decimal

Converting Decimals to Fractions

Converting Fractions to Decimals

H.C.F. and L.C.M. of Decimals

Repeating or Recurring Decimal

Pure Recurring Decimal

Mixed Recurring Decimal

BODMAS Rule

BODMAS/PEMDAS Rules - Involving Decimals

PEMDAS Rules - Involving Integers

PEMDAS Rules - Involving Decimals

PEMDAS Rule

BODMAS Rules - Involving Integers

Conversion of Pure Recurring Decimal into Vulgar Fraction

Conversion of Mixed Recurring Decimals into Vulgar Fractions

Simplification of Decimal

Rounding Decimals

Rounding Decimals to the Nearest Whole Number

Rounding Decimals to the Nearest Tenths

Rounding Decimals to the Nearest Hundredths

Round a Decimal

Adding Decimals

Subtracting Decimals

Simplify Decimals Involving Addition and Subtraction Decimals

Multiplying Decimal by a Decimal Number

Multiplying Decimal by a Whole Number

Dividing Decimal by a Whole Number

Dividing Decimal by a Decimal Number




7th Grade Math Problems

From Converting Decimals to Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 02:50 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More