Loading [MathJax]/jax/output/HTML-CSS/jax.js

Converting Decimals to Fractions

In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps:

Step I: Obtain the decimal.

Step II: Remove the decimal points from the given decimal and take as numerator.

Step III: At the same time write in the denominator, as many zero or zeros to the right of 1(one) (For example 10, 100 or 1000 etc.) as there are number of digit or digits in the decimal part. And then simplify it.

We can express a decimal number as a fraction by keeping the given number as the numerator without a decimal point and writing 1 in the denominator followed by as many zeroes on the right as the number of decimal places in the given decimal number has.

For example:                                                                           

(i) 124.6 = 124610

(ii) 12.46 = 1246100

(iii) 1.246 = 12461000


The problem will help us to understand how to convert decimal into fraction.

In 0.7 we will change the decimal to fraction.

First we will write the decimal without the decimal point as the numerator.

Now in the denominator, write 1 followed by one zeros as there are 1 digit in the decimal part of the decimal number.

Convert Decimal into Fraction




= 710

Therefore, we observe that 0.7 (decimal) is converted to 710 (fraction).


Working Rules for Conversion of a Decimal Into a Fraction:

To convert a decimal into fraction, we follow the following steps
Working Rules

Step I: Write the given number without decimal point as the numerator of the fraction.

Step II: Write 1 in the denominator followed by as many zeros as the number of decimal places in the given number.

Step III: Reduce the fraction into the lowest terms and if required change into mixed numeral.


Solved Examples on Converting Decimals to Fractions

1. Convert 6.75 into a fraction.

Solution:

Numerator of fraction = 675

Denominator of fraction = 100 (Because decimal places are 2, therefore, put 2 zeros after 1.)

So, 6.75 = 625100

             = 625÷25100÷25

             = 274

             = 634


2. Convert 924.275 into a fraction.

Solution:

Numerator of fraction = 924275

Denomination of fraction = 1000 (Because decimal places are 3, therefore, put 3 zeros after 1.)

Now, 924.275 = 9242751000

                     = 924275÷251000÷25

                     = 3697140

                     = 9241140


Worked-out Examples on Converting Decimals to Fractions:


1. Convert each of the following into fractions.

(i) 3.91

Solution:

3.91

Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by two zeros as there are 2 digits in the decimal part of the decimal number.

= 391100


(ii) 2.017

Solution:

2.017

= 2.0171

= 2.017×10001×1000  In the denominator, write 1 followed by three zeros as there are 3 digits in the decimal part of the decimal number.

= 20171000


2. Convert 0.0035 into fraction in the simplest form.

Solution:

0.0035

Fraction in the Simplest Form






Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by four zeros to the right of 1 (one) as there are 4 decimal places in the given decimal number.

Now we will reduce the fraction 3510000 and obtained to its lowest term or the simplest form.

= 72000


3. Express the following decimals as fractions in lowest form:

(i) 0.05

Solution:

0.05

= 5100 Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by two zeros to the right of 1 (one) as there are 2 decimal places in the given decimal number.

= 5÷5100÷5  Reduce the fraction obtained to its lowest term.

= 120


(ii) 3.75

Solution:

3.75

= 375100  Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by two zeros to the right of 1 (one) as there are 2 decimal places in the given decimal number.

= 375÷25100÷25  Reduce the fraction obtained to its simplest form.

= 154


(iii) 0.004

Solution:

0.004

= 41000 Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by three zeros to the right of 1 (one) as there are 3 decimal places in the given decimal number.

= 4÷41000÷4 ⟹ Reduce the fraction obtained to its lowest term.

= 1250


(iv) 5.066

Solution:

5.066

= 50661000  Write the given decimal number without the decimal point as numerator.

In the denominator, write 1 followed by three zeros to the right of 1 (one) as there are 3 decimal places in the given decimal number.

= 5066÷21000÷2  Reduce the fraction obtained to its simplest form.

= 2533500

Converting Decimals to Fractions


Worksheet on Converting Decimals to Fractions:

1. Convert the given decimal numbers to fractions in the lowest term:

(i) 1.3

(ii) 0.004

(iii) 4.005

(iv) 7.289

(v) 0.56

(vi) 21.08

(vii) 0.067

(viii) 6.66


Answers:

1. (i) 1310

(ii) 1250

(iii) 801200

(iv) 72891000

(v) 1425

(vi) 52725

(vii) 671000

(viii) 33350


2. Convert the following decimals into common fractions in the lowest terms:

(i) 0.7

(ii) 0.15

(iii) 0.085

(iv) 27.35

(v) 0.27

(vi) 2.08

(vii) 17.2

(viii) 5.005

(ix) 206.007

(x) 0.003

(xi) 71.035

(xii) 35.607


Answer:

2. (i) 710

(ii) 320

(iii) 17200

(iv) 27720

(v)27100

(vi) 225

(vii) 1715

(viii) 51200

(ix) 20671000

(x) 31000

(xi) 717200

(xii) 356071000


You might like these

Related Concept

Decimals

Decimal Numbers

Decimal Fractions

Like and Unlike Decimals

Comparing Decimals

Decimal Places

Conversion of Unlike Decimals to Like Decimals

Decimal and Fractional Expansion

Terminating Decimal

Non-Terminating Decimal

Converting Decimals to Fractions

Converting Fractions to Decimals

H.C.F. and L.C.M. of Decimals

Repeating or Recurring Decimal

Pure Recurring Decimal

Mixed Recurring Decimal

BODMAS Rule

BODMAS/PEMDAS Rules - Involving Decimals

PEMDAS Rules - Involving Integers

PEMDAS Rules - Involving Decimals

PEMDAS Rule

BODMAS Rules - Involving Integers

Conversion of Pure Recurring Decimal into Vulgar Fraction

Conversion of Mixed Recurring Decimals into Vulgar Fractions

Simplification of Decimal

Rounding Decimals

Rounding Decimals to the Nearest Whole Number

Rounding Decimals to the Nearest Tenths

Rounding Decimals to the Nearest Hundredths

Round a Decimal

Adding Decimals

Subtracting Decimals

Simplify Decimals Involving Addition and Subtraction Decimals

Multiplying Decimal by a Decimal Number

Multiplying Decimal by a Whole Number

Dividing Decimal by a Whole Number

Dividing Decimal by a Decimal Number




7th Grade Math Problems

From Converting Decimals to Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 13, 25 03:12 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  2. Face Value and Place Value|Difference Between Place Value & Face Value

    Apr 13, 25 03:07 PM

    Place Value and Face Value
    What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

    Read More

  3. Place Value and Face Value | Basic Concept on Place Value | Face Value

    Apr 13, 25 02:59 PM

    Face Value and Place Value of  a Number
    Learn the easiest way to understand the basic concept on place value and face value in the second grade. Suppose we write a number in figures 435 in words we write four hundred thirty five.

    Read More

  4. Expressing Place Value and Face Value | International & Indian System

    Apr 13, 25 02:35 PM

    We will learn expressing place value and face value of a digit in any number in International and Indian system. Place value: We know how to find out the place value of a digit in any number.

    Read More

  5. 5th Grade Decimals | Word Problem on Decimals | Concept of Decimals

    Apr 13, 25 02:16 PM

    Decimals
    A fractional number whose denominator is 10 or multiple of 10 is called a decimal. Every decimal has two parts whole number part and decimal part. These two parts are separated by a dot or point. This…

    Read More