Expanded form of Decimal Fractions

We will discuss here about the expanded form of decimal fractions.

In expanded form of decimal fractions we will learn how to read and write the decimal numbers.

Decimal numbers can be expressed in expanded form using the place-value chart. Let us consider the number 561.129. Let us expand each of the digits using the place-value chart.

Expanded form of Decimal

So, we can write 561.129 in the expanded form as follows.

561.129 = 500 + 60 + 1 + 0.1 + 0.02 + 0.009

             = 5 hundreds + 6 tens + 1 ones + 1 tenths + 2 hundredths + 9 thousandths

             = 500 + 60 + 1 + \(\frac{1}{10}\) + \(\frac{2}{100}\) + \(\frac{9}{1000}\)


Again,

493.2 = 4 hundreds + 9 tens + 3 ones + 2 tenths

         = 400 + 90 + 3 + \(\frac{2}{10}\)


1436.74 = 1 thousands + 4 hundreds + 3 tens + 6 ones + 7 tenths + 4 hundredths

             = 1000 + 400 + 30 + 6 + \(\frac{7}{10}\) + \(\frac{4}{100}\)


Note: When a decimal is missing either in the integral part or decimal part, substitute with 0. 


1. Write the decimal numbers in expanded form:

(i) 3479.105

= 3 thousands + 4 hundreds + 7 tens + 9 ones + 1 tenths + 0 hundredths+ 5 thousandths

= 3000 + 400 + 70 + 9 + \(\frac{1}{10}\) + \(\frac{0}{100}\) + \(\frac{5}{1000}\)


(ii) 7833.45

= 7 thousands + 8 hundreds + 3 tens + 3 ones + 4 tenths + 5 hundredths

= 7000 + 800 + 30 + 3 + \(\frac{4}{10}\) + \(\frac{5}{100}\)


(iii) 21.1097

= 2 tens + 1 ones + 1 tenths + 0 hundredths + 9 thousandths + 7 ten thousandths

= 20 + 1 + \(\frac{1}{10}\) + \(\frac{0}{100}\) + \(\frac{9}{1000}\) + \(\frac{7}{10000}\)


(iv) 524.1

= 5 hundreds + 2 tens + 4 ones + 1 tenths

= 500 + 20 + 4 + \(\frac{1}{10}\)


(v) 143.011

= 1 hundreds + 4 tens + 3 ones + 0 tenths + 1 hundredths + 1 thousandths

= 100 + 40 + 3 + \(\frac{0}{10}\) + \(\frac{1}{100}\) + \(\frac{1}{1000}\)


(vi) 840.006

= 8 hundreds + 4 tens + 0 ones + 0 tenths + 0 hundredths + 6 thousandths

= 800 + 40 + 0 + \(\frac{0}{10}\) + \(\frac{0}{100}\) + \(\frac{6}{1000}\)


(vii) 64.21

= 6 tens + 4 ones + 2 tenths + 1 hundredths

= 60 + 4 + \(\frac{2}{10}\) + \(\frac{1}{100}\)


(viii) 4334.334

= 4 thousands + 3 hundreds + 3 tens + 4 ones + 3 tenths + 3 hundredths + 4 thousandths

= 4000 + 300 + 30 + 4 + \(\frac{3}{10}\) + \(\frac{3}{100}\) + \(\frac{4}{1000}\)


2. Write as decimal fractions:

(i) 8 thousands + 8 ones + 3 tenths + 9 hundredths

= 8008.39


(ii) 4000 + 7 + \(\frac{5}{10}\) + \(\frac{6}{100}\)

= 4007.56


(iii) 6 hundreds + 9 tens + 8 tenths + 4 thousandths

= 690.804


(iv) 3 tens + 7 ones + 6 hundredths + 8 thousandths

= 37.068


(v) 400 + 50 + 1 + \(\frac{9}{100}\)

= 451.09


(vi) 800 + 70 + 2 + \(\frac{8}{10}\) + \(\frac{5}{1000}\)

= 872.805

(vii) 6 tens + 5 tenths + 8 hundredths

= 60.58


(viii) 9 hundreds + 4 tens + 3 tenths + 4 hundredths

= 940.34


3. Write the following in short form.

(i) 100 + 0.5 + 0.06 + 0.008             (ii) 80 + 1 + 0.02 + 0.005


Solution:

(i) 100 + 0.5 + 0.06 + 0.008           

= 100.568            


(ii) 80 + 1 + 0.02 + 0.005

= 81.025


4. Write the place-value of the underlined digits.

(i) 2.47                                (ii) 11.003                           (iii) 5.175


Solution:

(i) 2.47 

Place-value of 7 in 2.47 is 7 hundredths or 0.07.


(ii) 11.003

Place-value of 3 in 11.003 is 3 thousandths or 0.003.


(iii) 5.175

Place-value of 1 in 5.175 is 1 tenths or 0.1.


Expanded form of Decimals:

This is a form in which we add the place value of each digit forming the number.


Practice Problems on Expanded Form of Decimal Fractions:

I. Write each of the following decimals in expanded form:

(i) 38.54

(ii) 83.107

(iii) 627.074

Solution:

(i) 38.54 = 38 + \(\frac{5}{10}\) + \(\frac{4}{100}\) = 30 + 8 + 0.5 + 0.04


(ii) 83.107 = 83 + \(\frac{1}{10}\) + \(\frac{0}{100}\) + \(\frac{7}{1000}\)

                = 80 + 3 + 0.1 + 0 + 0.007

                = 80 + 3 + 0.1 + 0.007


(ii) 627.074 = 627 + \(\frac{0}{10}\) + \(\frac{7}{100}\) + \(\frac{4}{1000}\)

                  = 600 + 20 + 7 + 0 + 0.07 + 0.004

                  = 600 + 20 + 7 + 0.07 + 0.004


II. Write following in short form:

(i) 9 + \(\frac{3}{10}\) + \(\frac{4}{100}\)

(ii) 50 + 7 + \(\frac{6}{10}\) + \(\frac{2}{100}\) + \(\frac{4}{1000}\)

(iii) 100 + 4 + \(\frac{3}{10}\) + \(\frac{6}{1000}\)


Solution:

(i) 9 + \(\frac{3}{10}\) + \(\frac{4}{100}\) = 9.34

(β…±) 50 + 7 + \(\frac{6}{10}\) + \(\frac{2}{100}\) + \(\frac{4}{1000}\) = 57.624

(iii) 100 + 4 + \(\frac{3}{10}\) + \(\frac{6}{1000}\) = 104.306


III. Write the given decimals in expanded form by fractional expansion.

One example has been done for you to get the idea how to do decimals in expanded form by fractional expansion.

1.73 = 1 + \(\frac{7}{10}\) + \(\frac{3}{100}\)

(i) 23.8

(ii) 60.27

(iii) 119.05

(iv) 276.207


Answers:

(i) 20 + 3 + \(\frac{8}{10}\)

(ii) 60 + 0 + \(\frac{2}{10}\) + \(\frac{7}{100}\)

(iii) 100 + 10 + 9 + 0 + \(\frac{5}{100}\)

(iv) 200 + 70 + 6 + \(\frac{2}{10}\) + 0 + \(\frac{7}{100}\)


IV. Write the given decimals in expanded form by decimal expansion.

One example has been done for you to get the idea how to do decimals in expanded form by decimal expansion.

8.461 = 8 + 0.4 + 0.06 + 0.001

(i) 6.08

(ii) 36.505

(iii) 402.613

(iv) 700.037


Answers:

(i) 6 + 0.0 + 0.08

(ii) 30 + 6 + 0.5 + 0.00 + 0.005

(iii) 400 + 0 + 2 + 0.6 + 0.01 + 0.003

(iv) 700 + 0 + 0 + 0.0 + 0.03 + 0.007


V. Write the decimal number for the expansions given below.

(i) 10 + 6 + \(\frac{3}{10}\) + \(\frac{9}{1000}\)

(ii) 600 + 20 + 7 + \(\frac{1}{10}\) + \(\frac{3}{100}\) + \(\frac{7}{1000}\)

(iii) 2000 + 8 + \(\frac{3}{10}\) + \(\frac{9}{100}\)

(iv) 400 + 70 + 1 + 0.5 + 0.07 + 0.002

(v) 5000 + 80 + 0 + 0.2 + 0.002


Answers:

(i) 16.309

(ii) 627.137

(iii) 2008.39

(iv) 471.572

(v) 5080.202


VI. Write the following decimals in expanded form:

(i) 31.5

(ii) 37.53

(iii) 307.85

(iv) 752.34

(Ξ½) 882.146

(vi) 41.005

(vii) 345.083

(viii) 435.202


Answer:

VI. (i) 31.5 = 31 + 05

(ii) 37.53 = 30 + 7 + 0.5 + 0.03

(iii) 307.85 = 300 + 7 + 0.8 + 0.05

(iv) 752.34 = 700 + 50 + 2 + 0.3 + 0.04

(Ξ½) 882.146 = 800 + 80 + 2 + 0.1 + 0.04 + 0.006

(vi) 41.005 = 40 + 1 + 0.005

(vii) 345.083 = 300 + 40 + 5 + 0.08 + 0.003

(viii) 435.202 = 400 + 30 + 5 + 0.2 + 0.002


2. Write each of the following in decimal form:

(i) 9 + 4/10 + 6/100 + 2/1000

(ii) 600 + 40 + 5/1000

(iii) 300 + 3 + 5/10 + 2/1000

(iv) 700 + 40 + 7 + 2/100 + 3/1000


Answer:

2. (i) 9.462

(ii) 640.005

(iii) 303. 502

(iv) 747.023 


3. Fill in the boxes with correct numbers:

(i) 84.29 = 80 + πŸ”² + \(\frac{2}{10}\)+ \(\frac{9}{πŸ”²}\)

(ii) 35.265= 30 + 5 + \(\frac{πŸ”²}{10}\) + \(\frac{6}{100}\) + \(\frac{5}{πŸ”²}\)

(iii) 5672.053= 5000 + 600 + πŸ”² + πŸ”² + \(\frac{5}{πŸ”²}\) + \(\frac{3}{πŸ”²}\)


Answer:

3. (i) 84.29 = 80 + 4 + \(\frac{2}{10}\) + \(\frac{9}{\mathbf{{\color{Red}100}}}\)

(ii) 35.265= 30 + 5 + \(\frac{\mathbf{{\color{Red}2}}}{10}\) + \(\frac{6}{100}\) + \(\frac{5}{\mathbf{{\color{Red}1000}}}\)

(iii) 5672.053= 5000 + 600 + 70 + 2 + \(\frac{5}{\mathbf{{\color{Red}100}}}\) +  \(\frac{3}{\mathbf{{\color{Red}1000}}}\)

You might like these

● Decimal.

Decimal Place Value Chart.

Expanded form of Decimal Fractions.

Like Decimal Fractions.

Unlike Decimal Fraction.

Equivalent Decimal Fractions.

Changing Unlike to Like Decimal Fractions.

Ordering Decimals

Comparison of Decimal Fractions.

Conversion of a Decimal Fraction into a Fractional Number.

Conversion of Fractions to Decimals Numbers.

Addition of Decimal Fractions.

Problems on Addition of Decimal Fractions

Subtraction of Decimal Fractions.

Problems on Subtraction of Decimal Fractions

Multiplication of a Decimal Numbers.

Multiplication of a Decimal by a Decimal.

Properties of Multiplication of Decimal Numbers.

Problems on Multiplication of Decimal Fractions

Division of a Decimal by a Whole Number.

Division of Decimal Fractions

Division of Decimal Fractions by Multiples.

Division of a Decimal by a Decimal.

Division of a whole number by a Decimal.

Properties of Division of Decimal Numbers

Problems on Division of Decimal Fractions

Conversion of fraction to Decimal Fraction.

Simplification in Decimals.

Word Problems on Decimal.






5th Grade Numbers

5th Grade Math Problems

From Expanded form of Decimal Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 20, 24 01:00 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  3. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  4. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 18, 24 02:23 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More