Loading [MathJax]/jax/output/HTML-CSS/jax.js

Trigonometric Identities

XYZ is a right-angled triangle in which ∠XZY = 90° and ∠XYZ = θ, which in an acute angle.

10th Grade Trigonometric Identities

We know,

sin θ = OppositeHypotenuse = oh;

cos θ = AdjacentHypotenuse = ah;

tan θ = OppositeAdjacent = oa;

csc θ = HypotenuseOpposite = ho;

sec θ = HypotenuseAdjacent = ha;

cot θ = AdjacentOpposite = ao.

Let’s multiply sin θ and csc θ

sin θ ∙ csc θ = oh × ho = 1

Therefore, csc θ = 1sinθ

Now, multiply cos θ and sec θ

cos θ ∙ sec θ = ah × ha = 1

Therefore, sec θ = 1cosθ

Again, multiply tan θ and cot θ

tan θ ∙ cot θ = oa × aa = 1

Therefore, cot θ = 1tanθ

Let’s divide sin θ by cos θ

sin θ ÷ cos θ = sinθcosθ = ohah = oa = tan θ.

Therefore, tan θ = sinθcosθ.

Similarly, divide cos θ by sin θ

cos θ ÷ sin θ = cosθsinθ = ahoh = ao = cot θ.

Therefore, cot θ = cosθsinθ.

 

If a relation of equality between two expressions involving trigonometric ratios of an angle θ holds true for all values of θ then the equality is called a trigonometric identity. But it holds true only for some values of θ, the equality gives a trigonometric equation. There are a number of fundamental trigonometric identities.

I.  sin2 θ + cos2 θ = 1

We have, sin θ = oh and cos θ = ah.

Therefore, sin2 θ + cos2 θ = o2h2 + a2h2.

                                       = o2+a2h2

                                       = h2h2; [Since, in the right-angled ∆XYZ, o2 + a2 = h2 (by Pythagoras’ Theorem)]

                                        = 1.

Therefore, sin2 θ + cos2 θ = 1.

Consequently, 1 - sin2 θ = cos2 θ and 1 - cos2 θ = sin2 θ.

 

II. sec2 θ - tan2 θ = 1

We have, sec θ = ha and tan θ = oa.

Therefore, sec2 θ - tan2 θ = h2a2 - o2a2.

                                      = h2o2a2

                                      = a2a2; [Since, in the right-angled ∆XYZ, o2 + a2 = h2 ⟹ h2 - o2 = a2 (by Pythagoras’ Theorem)]

                                      = 1.

Therefore, sec2 θ - tan2 θ = 1.

Consequently, 1 + tan2 θ = sec2 θ and sec2 θ - 1 = tan2 θ.

 

 

III. csc2 θ - cot2 θ = 1

We have, csc θ = ho and cot θ = ao.

Therefore, csc2 θ - cot2 θ = h2o2 - a2o2.

                                       = h2a2o2

                                       = o2o2; [Since, in the right-angled ∆XYZ, o2 + a2 = h2 ⟹ h2 - a2 = o2 (by Pythagoras’ Theorem)]

                                       = 1.

Therefore, csc2 θ - cot2 θ = 1.

Consequently, 1 + cot2 θ = csc2 θ and csc2 θ - 1 = cot2 θ.

These three trigonometric identities are also called Pythagorean identities.

Pythagorean Identities

Note: The equalities csc θ = 1sinθ, sec θ = 1cosθ, cot θ = 1tanθ, tan θ = sinθcosθ and cot θ = cosθsinθ are holds for all values of θ. Therefore, these equalities are trigonometric identities.

Thus, we have the following trigonometric identities.


Table of Trigonometric Identities

1. csc θ = 1sinθ,

2. sec θ = 1cosθ,

3. cot θ = 1tanθ,

4. tan θ = sinθcosθ,

5. cot θ = cosθsinθ

6. sin2 θ + cos2 θ = 1; 1 - sin2 θ = cos2 θ, 1 - cos2 θ = sin2 θ.

7. sec2 θ - tan2 θ = 1; 1 + tan2 θ = sec2 θ; sec2 θ - 1 = tan2 θ.

8. csc2 θ - cot2 θ = 1

9. 1 + cot2 θ = csc2 θ,

10. csc2 θ - 1 = cot2 θ.

Table of Trigonometric Identities

Solved Examples on Trigonometric Identities:

1. Prove that sin4 θ + cos4  θ + 2 sin2 θ ∙ cos2  θ = 1

Solution:

LHS = sin4 θ + cos4  θ + 2 sin2 θ ∙ cos2  θ

       = (sin2 θ)2 + (cos2  θ)2 + 2 sin2 θ ∙ cos2  θ

       = (sin2 θ + cos2 θ)2

       = 12; [Since, sin2 θ + cos2 θ = 1]

       = 1 = RHS. (Proved).


How to Solve Trigonometric Identities Proving Problems?

2. Show that sec θ - cos θ = sin θ tan θ

Solution:

LHS =  sec θ - cos θ

      = 1cosθcos θ

      = \(\frac{1 - cos^{2} θ}{cos θ}\)

      = \(\frac{sin^{2} θ}{cos θ}\);  [Since, sin2 θ + cos2 θ = 1]

      = sin θ ∙ \(\frac{sin θ}{cos θ}\)

      = sin θ ∙ tan θ = RHS. (Proved)


3. Prove that 1 - cos2A1+sinA = sin A

Solution:

LHS = 1 - cos2A1+sinA

       = 1 - 1sin2A1+sinA; [cos2 θ = 1 - sin2 θ]

       = 1 - (1+sinA)(1sinA)1+sinA

       = 1 – (1 – sin A)

       = 1 – 1 + sin A

       = sin A = RHS. (Proved).


Verifying Trigonometric Identities & Equations

4. Prove that sinA1+cosA + sinA1cosA = 2 csc A.

Solution:

LHS = sinA1+cosA + sinA1cosA

       = sinA(1cosA)+sinA(1+cosA)(1+cosA)(1cosA)

       = sinAsinAcosA+sinA+sinAcosA)1cos2A

       = 2sinAsin2A; [Since, 1 - cos2 A = sin2 A]

       = 2sinA

       = 2 ∙ 1sinA; [Since, csc A = 1sinA]

       = RHS. (Proved).


Proving Trigonometric Identities Practice Problems Online

5. Prove that sinA1+cosA = 1cosAsinA.

Solution:

LHS = sinA1+cosA

       = sinA1+cosA1cosA1cosA

       = sinA(1cosA)1cos2A

       = sinA(1cosA)sin2A; [Since 1 - cos2 θ = sin2 θ]

       = 1cosAsinA = RHS. (Proved).


Trigonometry Problems and Questions with Solutions

6. Prove that 1+sinθ1sinθ = sec θ +tan θ.

Solution:

LHS = 1+sinθ1sinθ

       = (1+sinθ)(1+sinθ)(1sinθ)(1+sinθ)

       = (1+sinθ)21sin2θ

       = (1+sinθ)2cos2θ; [Since 1 - sin2 θ = cos2 θ]

       = 1+sinθcosθ

       = 1cosθ + sinθcosθ

       = secθ + tan θ = RHS. (Proved).


Trigonometric identities problems for class 10

7. Prove that tan2 A – tan2 B = sin2Asin2Bcos2Acos2B = sec2 A - sec2 B

Solution:

LHS = tan2 A – tan2 B

       = sin2Acos2A - sin2Bcos2B

       = sin2Acos2Bsin2Bcos2Acos2Acos2B

       = sin2A(1sin2B)sin2B(1sin2A)cos2Acos2B; [Since, cos2 B = 1 - sin2 B and cos2 A = 1 - sin2 A]

       = sin2Asin2Asin2Bsin2B+sin2Bsin2Acos2Acos2B;

        = sin2Asin2Bcos2Acos2B = MHS

        = (1cos2A)(1cos2B)cos2Acos2B; [Since, sin2 A = 1 - cos2 A and sin2 B = 1 - cos2 B]

        = cos2Bcos2Acos2Acos2B

        = cos2Bcos2Acos2B - cos2Acos2Acos2B

        = 1cos2A - 1cos2B

        = sec2 A – sec2 B = RHS. (Proved)

Again, 

LHS = tan2 A – tan2 B

       = (sec2 A – 1) – (sec2 B – 1); [Since, tan2 θ = sec2 θ – 1 ]

       = sec2 A – 1 – (sec2 B +1

       = sec2 A – sec2 B = RHS. (Proved).


Solving Trigonometric Equations using Trigonometric Identities

8. Prove that tan2 θ - sin2 θ = tan2 θ ∙ sin2 θ

Solution:

LHS = tan2 θ - sin2 θ

       = tan2 θ - sin2θcos2θ ∙ cos2

       = tan2 θ - tan2 θ ∙ cos2

       = tan2 θ(1 - cos2)

       = tan2 θ ∙ sin2 θ = RHS. (Proved).


List of trigonometric identities Problems

9. Prove that 1 + cot2θ1+cscθ = csc θ

Solution:

LHS = 1 + cot2θ1+cscθ

       = 1 + csc2θ11+cscθ

       = 1 + (cscθ+1)(cscθ1)1+cscθ

       = 1 + (csc θ – 1)

       = 1 + csc θ – 1

       = csc θ = RHS. (Proved).


Solve the problem using trigonometric identities

10. Prove that secθ)secθ+1 = (cot θ – csc θ)2.

Solution:

LHS = secθ1secθ+1

       = secθ1secθ+1secθ1secθ1

       = (secθ1)2sec2θ1

       = (secθ1)2tan2θ; [Since sec2 θ – 1 = tan2 θ]

       = (secθ1tanθ)2

       = (1cosθ1sinθcosθ)2

       = (1cosθcosθcosθsinθ)2

       = (1cosθsinθ)2

       = (1sinθcosθsinθ)2

       = (csc θ – cot θ)2

       = (cot θ – csc θ)2 = RHS. (Proved).


Proving Trigonometric Identities

11. Prove that sinAcotA+cscA = 2 + sinAcotAcscA

Solution:

LHS = sinAcotA+cscA

       = sinA(cotAcscA)(cotA+cscA)(cotAcscA)

       = sinAcotAsinAcscAcot2Acsc2A

       = sinAcosAsinA11; [since, sin θ csc θ = 1, csc2 θ – cot2  θ = 1]

       = cosA11

       = 1 – cos A

RHS = 2 + sinAcotAcscA

        = 2 + sinAcotAcscA(cotA+cscA)(cotA+cscA)

        = 2 + sinA(cotA+cscA)cot2Acsc2A

        = 2 + sinA(cosAsinA+1sinA)1

        = 2 + cosA+11

        = 2 – (cos A + 1)

        = 2 – cos A – 1

        = 1 – cos A

Therefore, LHS = RHS. (Proved).


Alternative Method

The identity is established if we can prove that

sinAcotA+cscA - sinAcotAcscA = 2

Now, here  

LHS = sinAcotA+cscA - sinAcotAcscA

       = sinA(cotAcscA)sinA(cotA+cscA)(cotA+cscA)(cotAcscA)

       = sinAcotAsinAcscAsinAcotAsinAcscA(cotA+cscA)(cotAcscA)

       = 2sinAcscAcot2Acsc2A

       = 21; [Since sin θ csc θ = 1, csc2 θ – cot2  θ = 1]

       = 2 = RHS. (Proved)


Problems on Evaluation using Trigonometric Identities:

12. If sin θ + csc θ = 2, find the value of sin10 θ + csc11 θ

Solution:

Given that, sin θ + csc θ = 2 ……………. (i)

⟹ sin θ + 1sinθ = 2

sin2θ+1sinθ = 2

⟹ sin2 θ + 1= 2 sin θ

⟹ sin2 θ - 2 sin θ + 1 = 0

⟹ (sin θ - 1)2 = 0

⟹ sin θ - 1 = 0

⟹ sin θ = 1

⟹ csc θ = 1sinθ = 11 = 1

Therefore, csc θ = 1.

Now, sin10 θ + csc11 θ

= 110 + 111

= 1 + 1

= 2.

 

13. If sec θ – tan θ = 13, find the value of sec A and tan A.

Solution:

Given, sec θ – tan θ = 13 ………… (i)

We know that the Pythagorean identity, sec2 θ - tan2 θ = 1.

                   ⟹ (sec θ + tan θ)(sec θ - tan θ) = 1

                   ⟹ (sec θ + tan θ) ∙ 13 = 1, [Given sec θ – tan θ = 13]

                   ⟹ sec θ + tan θ = 3 ……….. (ii)

Now adding (i) and (ii) we get

                       2 sec θ = 13 + 3

                   ⟹ 2 sec θ = 103

                   ⟹ sec θ = 10312

                   ⟹ sec θ = 53

Therefore, sec θ = 53

Putting the value of sec θ = 53 in (ii), we get

53 + tan θ = 3

⟹ tan θ = 3 - 53

⟹ tan θ = 43

Therefore, tan θ = 43.


14. If tan A + sec A = 23, find the value of sin A

Solution:

Given that, tan A + sec A = 23 ……………….. (i)

We know the Pythagorean trigonometric identity,

       sec2 A - tan2 A = 1.

⟹ (sec A + tan A)(sec A – tan A) = 1

23(sec A – tan A) = 1; [given , tan A + sec A = 23]

⟹ sec A – tan A = 32 ……………….. (ii)


Solving these two equations we get,

     2 sec A = 23 + 32

 ⟹ 2 sec A = 4+323

 ⟹ 2 sec A = 723

⟹ sec A = 743 ……………….. (iii)


Putting the value of sec A = 743 in (i) we get,

     tan A + 743 = 23

⟹ tan A = 23 - 743

⟹ tan A = 8743

⟹ tan A = 143……………….. (iv)


Now dividing (iv) by (iii) we get,

tanAsecA = 17

⟹ sin A = 17

Therefore, sin A = 17.


Problems on establishing conditional results

15. If cos A + sin A = 2 cos A, prove that cos A - sin A = 2 sin A.

Solution:

Let cos A - sin A = k. Now,

(cos A + sin A)2(cos A - sin A)2 = cos2 A + sin2 A + 2 cos A ∙ sin A + cos2 A + sin2 A - 2 cos A ∙ sin A

                                            = 1 + 2 cos A sin A + 1 - 2 cos A sin A

                                            = 2

Therefore, (2 cos A)2 + k2 = 2

⟹ k2 = 2 - (2 cos A)2 

⟹ k2 = 2 - 2cos2 A

⟹ k2 = 2(1 - cos2 A)

⟹ k2 = 2sin2 A; [Since, sin2 θ + cos2 θ = 1]

⟹ k = 2 sin A

⟹ cos A - sin A = 2 sin A. (Proved).





10th Grade Math

From Trigonometric Identities to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtracting 2-Digit Numbers Video | How to Subtract Two Digit Numbers?

    Apr 01, 25 02:15 AM

    Subtracting 2-Digit Numbers
    In subtracting 2-digit numbers we will subtract or minus a two-digit number from another two-digit number. To find the difference between the two numbers we need to ‘ones from ones’ and ‘tens from

    Read More

  2. PEMDAS Rule | Steps to Simplify the Order of Operation | Simple Rules

    Apr 01, 25 02:10 AM

    Easy and simple way to remember PEMDAS rule!! P → Parentheses first E → Exponent (Powers, Square Roots, Cube Roots, etc.) MD → Multiplication and Division (start from left to right) AS →

    Read More

  3. Worksheet on Simplification | Simplify Expressions | BODMAS Questions

    Apr 01, 25 01:59 AM

    In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

    Read More

  4. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 31, 25 11:35 PM

    What is BODMAS Rule in Math?
    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  5. Subtracting 1-Digit Number | Subtract Two One-Digit Number | Video

    Mar 30, 25 10:16 AM

    Cross Out 6 Objects
    In subtracting 1-digit number we will subtract or minus one-digit number from one-digit number or one-digit number from 2-digit number and find the difference between them. We know that subtraction me…

    Read More