Properties of Adding Integers

The properties of adding integers are discussed here along with the examples.

1. Closure Property: The addition (sum) of any two integers is always an integer.

i.e., 

The sum of integers is always an integer.

Hence, integers are closed under addition. If x and y are two integers, then x + y is always an integer.

For example:

(i) 16 + 48 = 64, which is an integer.

(ii) 12 + (-38) = -26, which is an integer.

(iii) - 24 + (- 14) = - 38, which is an integer.

(iv) 42 + (- 10) = 32, which is an integer.

(v) 5 + 9 = 14 ∈ Z

(vi) (-5) + 9 = 4 ∈ Z

(vii) (-5) + (-9) = -14 ∈ Z

(viii) 5 + (-9) = -4 ∈ Z                    and so on.

2. Commutative Property: Two integers can be added in any order.

Hence, addition is commutative for integers.

For any two integers ‘x’ and ‘y’;

x + y = y + x

For example:

(i) (-7) + 18 = 11 and 18 + (-7) = 11

Therefore, (-7) + 18 = 18 + (-7)


(ii) (-28) + (-5) = - 33 and (-5) + (-28) = -33

Therefore, (-28) + (-5) = (-5) + (-28)


(iii) (+3) + (+8) = (+8) + (+3)

(iv) (-7) + (+3) = (+3) + (-7)

(v) (-9) + (-3) = (-3) + (-9)

(vi) (+5) + (-3) = (+5) + (-3)                    and so on.


3. Associative Property: Three or more integers can be grouped in any order to find their sum. Hence, addition is associative for integers.

For any three integers ‘x’ ‘y’ and ‘z’;

x + (y + z) = (x + y) + z


For example:

(i) [(-5) + (-3)] + 10 = (-8) + 10 = 2 and (-5) + [(-3) + 10] = (-5) + (7) = 2

Therefore, [(-5) + (-3)] + 10 = (-5) + [(-3) + 10]


(ii) [(- 24) + 12] + 6 = (-12) + 6 = -6 and (- 24) + (12 + 6) = - 24 + 18 = -6

Therefore, [(- 24) + 12] + 6 = (- 24) + (12 + 6)


(iii) (+5) + [(-2) + (+3)] = [(+5) + (-2)] + (+3)

(iv) (-3) + [(-4) + (-5)] = [(-3) + (-4)] + (-5)

(v) (+4) + [(+2) + (+3)] = [(+4) + (+2)] + (+3)

(vi) (-2) + [(+3) + (-4)] = [(-2) + (+3)] + (-4)

(vii) (-4) + [(-3) + (+5)] = [(-4) + (-3)] + (+5)

(viii) (+3) + [(+4) + (-2)] = [(+3) + (+4)] + (-2)

(ix) (-3) + [(2) + (7)] = [(-3) + (2)] + (7)

(x) 9 + [(-4) + (-2)] = [9 + (-4)] + (-2)                    and so on.


4. Existence of Additive Identity: The sum of any integer and 0 is the integer itself, 0 is the additive identity for integers.

For any integer ‘x’;

x + 0 = 0 + x = x 

For example:

(i) 100 + 0 = 0 + 100 = 100

(ii) (-45) + 0 = 0 + (-45) = -45

(iii) (+7) + 0 = 0 + (+7) = +7

(iv) (-11) + 0 = 0 + (-11) = -11

(v) 0 + (+9) = (+9) + 0 = +9

(vi) 0 + (-5) = (-5) + 0 = -5                    and so on.


5. Existence of Additive Inverse: For any integer x, there exists its opposite -x such that their sum is zero, i.e., 

x + (-x) = (-x) + x = 0

Integers x and -x are called opposites or negatives or additive inverses of each other. 

For example:

(i) 15 + (-15) = (-15) + 15 = 0.

Thus, the additive inverse of 15 is -15 and 

         the additive inverse of -15 is 15.

(ii) 56 + (-56) = (-56) + 56 = 0.

Thus, the additive inverse of 56 is -56 and 

         the additive inverse of -56 is 56.


(iii) 5 + (-5) = 0

(iv) (-7) + 7 = 0                    and so on.


6. Successor and Predecessor of an Integers: If x is any integer, then (x + 1) is called the successor of x and x - 1 is called the predecessor of x.

For example:

(i) Successor of 6 is 6 + 1 = 7;     Predecessor of 6 is 6 - 1 = 5

(ii) Successor of -5 is -5 + 1 = -4;     Predecessor of -5 is -5 - 1 = -6


Properties of Adding Integers


Solved Examples on Properties of Adding Integers:

1. Fill in the blanks and make each of the following a true statement.

(i) The additive inverse of 17 is __________.

(ii) The additive inverse of -48 is __________.

(iii) The successor of 12 is __________.

(iv) The successor of -90 is __________.

(v) The predecessor of 1000 is __________.

(vi) The predecessor of -10000 is __________.


Solution:

(i) The additive inverse of 17 is -17; [Since, 17 + (-17) = 0]

(ii) The additive inverse of -48 is 48; [Since, (-48) + 48 = 0]

(iii) The successor of 12 is 13; [Since, 12 + 1 = 13] 

(iv) The successor of -90 is -89; [Since, -90 + 1 = -89]

(v) The predecessor of 1000 is 999; [Since, 1000 - 1 = 999]

(vi) The predecessor of -10000 is -10001; [Since, -10000 - 1 = -10001]


2. Example in Find the sum of the following.

(i) (- 15) + (- 18) + 26 + 45

(ii) 42 + (- 4) + (- 78) + (- 7)


Solution:

(i) (- 15) + (- 18) + 26 + 45

  = (- 33) + (71)

  = + (71 - 33)

  = +38

  = 38


(ii) 42 + (- 4) + (- 78) + (- 7)

  = 42 + (-89)

  = - (89 - 42)

  = - (47)

  = - 47


3. Find an integer 'n" such that

(i) 10 + n = 0

(ii) n + (- 7) = 0


Solution:

(i) 10 + n = 0

⟹ (- 10) + 10 + n = (- 10) + 0; [Adding (-10) on both sides]

⟹ [(- 10) + 10] + n = - 10; [Using associative property and property of 0]

⟹ 0 + n = - 10

Hence, n = - 10.


(ii) n + (- 7) = 0

⟹ n + (- 7) + 7 = 0 + 7; [Adding 7 on both sides]

⟹ n + [(- 7) + 7] = 7; [Using associative property and property of 0]

⟹ n + 0 = 7

Hence, n = 7

You might like these




Numbers Page

6th Grade Page

From Properties of Adding Integers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Capacity | Add the Different Units of Capacity | Examples

    Nov 14, 24 03:03 PM

    Addition of Measurement of Capacity
    In addition of capacity we will learn how to add the different units of capacity and volume together. While adding we need to follow that the units of capacity i.e., liter and milliliter

    Read More

  2. Measuring Capacity | Standard Unit of Capacity | Litre | Millilitres

    Nov 14, 24 02:40 PM

    2 Tablespoonful of Water
    We will discuss about measuring capacity. The milkman measures milk in liters. Petrol is given in liters. Mobil oil is sold in liters. Two milk bottles contain 1 liter of milk. One milk bottle

    Read More

  3. Subtraction of Mass | Difference Between the Units of Mass | Examples

    Nov 14, 24 09:16 AM

    Subtraction of Measurement of Weight
    In subtraction of mass we will learn how to find the difference between the units of mass or weight. While subtracting we need to follow that the units of mass i.e., kilogram and gram

    Read More

  4. Worksheet on Subtraction of Mass |Word Problems on Subtraction of Mass

    Nov 13, 24 02:00 PM

    Worksheet on Subtraction of Mass
    Practice the third grade math worksheet on subtraction of mass or weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More

  5. Worksheet on Addition of Mass | Word problems on Addition of Mass

    Nov 13, 24 10:24 AM

    Practice the third grade math worksheet on addition of mass/weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More