Properties of Subtraction

Some properties of subtraction of whole numbers are:

Property I:

If a and b are two whole numbers such that a > b or a = b, then a – b is a whole number. If a < b, then subtraction a – b is not possible in whole numbers.

For example:

9 - 5 = 4

87 - 36 = 51

130 - 60 = 70

119 - 59 = 60

28 - 0 = 28

Property II:

The subtraction of whole numbers is not commutative, that is, if a and b are two whole numbers, then in general a – b is not equal to (b – a).

Verification:

We know that 9 – 5 = 4 but 5 – 9 is not possible. Also, 125 – 75 = 50 but 75 – 125 is not possible. Thus, for two whole numbers a and b if a > b, then a – b is a whole number but b – a is not possible and if b > a, then b – a is a whole number but a – b is not possible.

Hence, in general (a – b) is not equal to (b – a)



Property III:

If a is any whole number other than zero, then a – 0 = a but 0 – a is not defined.

Verification:

We know that 15 – 0 = 15, but 0 – 15 is not possible.

Similarly, 39 – 0 = 39, but 0 – 39 is not possible.

Again, 42 – 0 = 42, but 0 – 42 is not possible.



Property IV:

The subtraction of whole numbers is not associative. That is, if a, b, c are three whole numbers, then in general a – (b – c) is not equal to (a – b) – c.

Verification:

We have,

20 – (15 – 3) = 20 – 12 = 8,

and, (20 – 15) – 3 = 5 – 3 = 2

Therefore, 20 – (15 – 3) ≠ (20 – 15) – 3.

Similarly, 18 – (7 – 5) = 18 – 2 = 16,

and, (18 – 7) – 5 = 11 – 5 = 6.

Therefore, 18 – (7 – 5) ≠ (18 – 7) – 5.



Property V:

If a, b and c are whole numbers such that a – b = c, then b + c = a.

Verification:

We know that 25 – 8 = 17. Also, 8 + 17 = 25

Therefore, 25 – 8 = 17 or, 8 + 17 = 25

Similarly 89 – 74 = 15 because 74 + 15 = 89.


Zero Property of Subtraction - When zero is subtracted from the number, the difference is the number itself.

For example,

(i) 8931 – 0 = 8931;

(ii) 5649 – 0 = 5649;

(iii) 245 – 0 = 245

(iv) 197 – 0 = 197


Properties of Subtraction of a Number from itself: When a number is subtracted from itself the difference is zero.

For example,

(i) 5485 – 5485 = 0

(ii) 345 – 345 = 0

(iii) 279 – 279 = 0


 Predecessor – On subtracting 1 from any number, we get the number just before it. When 1 is subtracted from a number, we get its predecessor.

For example,

(i) 6001 – 1 = 6000

(ii) 6000 – 1 = 5999

(iii) 163 – 1 = 162

(iv) 171 – 1 = 170

Properties of Subtraction


Worksheet on Properties of Subtraction:

I. Fill in the blanks:

(i) 568 – 0 = …………….

(ii) 7530 – 4530 = …………….

(iii) 7790 – 1 = …………….

(iv) 65894 – 65893 = …………….

(v) 54172 - ……………. = 0

(vi) 8688 – 8288 = …………….

(vii) 7721 – 5620 = …………….

(viii) 17281 – 1 = …………….

(ix) ……………. – 1 = 29999

(x) 29080 - ……………. = 29079

(xi) 548 - ………….. = 0

(xii) ………….. – 0 = 274

(xiii) 367 - ………….. = 367

(xiv) 765 – 765 = …………..

(xv) 212 – 0 = …………..

(xvi) 167 - ………….. = 0

(xvii) 647 – 647 = …………..

(xviii) 326 – 326 = …………..

(xix) ………….. – 0 = 876

(xx) 429 – 0 = …………..

(xxi) 999 – 999 = …………..

(xxii) 412 - ………….. = 412

(xxiii) 700 - 100 = …………..

(xxiv) 100 - 10 = …………..

(xxv) 9429 - 100 = …………..

(xxvi) 4583 - 1000 = …………..

(xxvii) 9498 - 1000 = …………..

(xxviii) 1000 - 1000 = …………..


Answers:

(i) 568

(ii) 3000

(iii) 7789

(iv) 1

(v) 54172

(vi) 400

(vii) 2101

(viii) 17280

(ix) 30000

(x) 1

(xi) 54

(xii) 274

(xiii) 0

(xiv) 0

(xv) 212

(xvi) 167

(xvii) 0

(xviii) 0

(xix) 876

(xx) 429

(xxi) 0

(xxii) 0

(xxiii) 600

(xxiv) 90

(xxv) 9329

(xxvi) 3583

(xxvii) 8498

(xxviii) 0


II. Match the given difference to its solution by coloring the cloud and the shape with same color.

Match the Given Difference


Answer:

(i) → 3

(ii) → 4

(iii) → 5

(iv) → 1

(v) → 2


III. Write the predecessor of the following numbers:

(i) 259 …………..

(ii) 608 …………..

(iii) 450 …………..

(iv) 374 …………..

(v) 900 …………..

(vi) 529 …………..

(vii) 201 …………..

(viii) 598 …………..


Answers:

III. (i) 258

(ii) 607

(iii) 449

(iv) 373

(v) 899

(vi) 528

(vii) 200

(viii) 597


IV: Fill in the blanks on the basis of subtraction facts:

(i) 43 - 0 = _____

(ii) 18 - 1 = _____

(iii) 77 - 77 = _____

(iv) 54 - 0 = _____

(v) 33 - 1 = _____

(vi) 62 - 0 = _____

(vii) 98 - 1 = _____

(viii) 56 - 56 = _____

(ix) 34 - 0 = _____


Answer:

IV: (i) 43

(ii) 17

(iii) 0

(iv) 54

(v) 32

(vi) 62

(vii) 97

(viii) 0

(ix) 34

1. When do you find the difference is the number itself? 

Answer: Subtracting zero from a number means no subtraction. The difference is the number itself.


Examples: 11 - 0 = 11

                 19 - 0 = 19

                 93 - 0 = 93

2. How do we get the predecessor of a number?

Answer: By subtracting 1 from a number, we get the previous number or predecessor of that number.

Examples: 18 - 1 = 17

                 29 - 1 = 28

               101 - 1 = 100

3. What the difference between two numbers is zero (0)?

Answer: When a number is subtracted from itself the difference is zero.

Examples: 10 - 10 = 0

                 75 - 75 = 0

                 98 - 98 = 0


Math Only Math is based on the premise that children do not make a distinction between play and work and learn best when learning becomes play and play becomes learning.

However, suggestions for further improvement, from all quarters would be greatly appreciated.

You might like these







Numbers Page 

6th Grade Page 

From Properties of Subtraction to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Capacity | Add the Different Units of Capacity | Examples

    Nov 14, 24 03:03 PM

    Addition of Measurement of Capacity
    In addition of capacity we will learn how to add the different units of capacity and volume together. While adding we need to follow that the units of capacity i.e., liter and milliliter

    Read More

  2. Measuring Capacity | Standard Unit of Capacity | Litre | Millilitres

    Nov 14, 24 02:40 PM

    2 Tablespoonful of Water
    We will discuss about measuring capacity. The milkman measures milk in liters. Petrol is given in liters. Mobil oil is sold in liters. Two milk bottles contain 1 liter of milk. One milk bottle

    Read More

  3. Subtraction of Mass | Difference Between the Units of Mass | Examples

    Nov 14, 24 09:16 AM

    Subtraction of Measurement of Weight
    In subtraction of mass we will learn how to find the difference between the units of mass or weight. While subtracting we need to follow that the units of mass i.e., kilogram and gram

    Read More

  4. Worksheet on Subtraction of Mass |Word Problems on Subtraction of Mass

    Nov 13, 24 02:00 PM

    Worksheet on Subtraction of Mass
    Practice the third grade math worksheet on subtraction of mass or weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More

  5. Worksheet on Addition of Mass | Word problems on Addition of Mass

    Nov 13, 24 10:24 AM

    Practice the third grade math worksheet on addition of mass/weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More