Fraction as Decimal

We will discuss how to express fraction as decimal.


Fractions with denominator 10:

Fractional Number       Fraction           Decimal

        9 tenths                    \(\frac{9}{10}\)                      0.9

        6 tenths                    \(\frac{6}{10}\)                      0.6

        3 tenths                    \(\frac{3}{10}\)                      0.3

        7 tenths                    \(\frac{7}{10}\)                      0.7

      27 tenths                    \(\frac{27}{10}\)                      2.7

There

is

only 1 zero in the

denominator, hence

1

decimal place.


Fractions with denominator 100:

Fractional Number       Fraction           Decimal

     3 hundredths               \(\frac{3}{100}\)                   0.03

   28 hundredths                \(\frac{28}{100}\)                  0.28

 368 hundredths               \(\frac{368}{100}\)                   3.68

4192 hundredths              \(\frac{4192}{100}\)                 41.92

There

are

2 zeros in the

denominator, hence

2

decimal places.


Fractions with denominator 1000:

Fractional Number       Fraction           Decimal

      9 thousandths             \(\frac{9}{1000}\)                0.009

    19 thousandths             \(\frac{19}{1000}\)                0.019

  319 thousandths             \(\frac{319}{1000}\)                0.319

3812 thousandths             \(\frac{3812}{1000}\)                3.812

There

are

3 zeros in the

denominator, hence

3

decimal places.


To convert fractions to decimals, remember the following steps.

Step I: Write the mixed fraction as an improper fraction.

Step II: Then write the numerator.

Step III: Count the number of zeroes in the denominator. The number of decimal places is equal to the number of zeroes in the denominator.

Step IV: Put the decimal point counting the number of digits from the right equal to the number of zeroes in the denominator.

Step V: If the number of digits in the numerator is less than the number of zeroes in the denominator, put the required number of zeroes between the decimal point and the number so that the decimal place equals the number of zeroes.


Let us consider some of the following examples on expressing a fraction as a decimal.

1. Convert \(\frac{4}{5}\) into a decimal.

Solution:

\(\frac{4}{5}\) can be written as \(\frac{4 × 2}{5 × 2}\)

                          = \(\frac{8}{10}\)

                          = 0.8

We multiply the numerator and the denominator by 2 to make the denominator 10.


2. Convert \(\frac{3}{25}\) into a decimal.

Solution:

\(\frac{3}{25}\) can be written as \(\frac{3 × 4}{25 × 4}\)

                          = \(\frac{12}{100}\)

                          = 0.12

We multiply the numerator and the denominator by 4 to make the denominator 100.


3. Convert 2\(\frac{3}{5}\) into a decimal.

Solution:

2\(\frac{3}{5}\) can be written as 2 + \(\frac{3}{5}\)

                          = 2 + \(\frac{3 × 2}{5 × 2}\)

                          = 2 + \(\frac{6}{10}\)

                          = 2 + 0.6

                          = 2.6


We multiply the numerator and the denominator by 2 to make the denominator 10.


4. Convert 14\(\frac{57}{250}\) into a decimal.

Solution:

14\(\frac{57}{250}\) can be written as 14 + \(\frac{57}{250}\)

                               = 14 + \(\frac{57 × 4}{250 × 4}\)

                               = 14 + \(\frac{228}{1000}\)

                               = 14 + 0.228

                               = 14.228


We multiply the numerator and the denominator by 4 to make the denominator 1000.


Questions and Answers on Fraction as Decimal:

I. Convert the following fractions to decimals:

(i) \(\frac{19}{100}\)      

(ii) \(\frac{3}{100}\)        

(iii) \(\frac{36}{10}\)       

(iv) \(\frac{145}{100}\)  

(v) \(\frac{27}{1000}\)   

(vi) \(\frac{3124}{1000}\)             

(vii) \(\frac{956}{10}\)   

(viii) \(\frac{204}{100}\)

(ix) 3\(\frac{26}{100}\)  

(x) 18\(\frac{43}{100}\)




4th Grade Math Activities

From Fraction as Decimal to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More