Dividing a Quantity in a given Ratio

We will follow the rules of dividing a quantity in a given ratio (two or three) to solve different types of problems.

1. 20 apples are distributed between Aaron and Ben in the ratio 2 : 3. Find, how many does each get?

Solution:

Aaron and Ben get apples in the ratio 2 : 3 i.e., if Aaron gets 2 parts, B should get 3 parts.

In other words, if we make (2 + 3) = 5 equal parts, then Aaron should get 2 parts out of these 5 equal part

i.e. Aaron gets = \(\frac{2}{5}\) of the total number of apples = \(\frac{2}{5}\) of 20 = \(\frac{2}{5}\) × 20 = 8 apples

Similarly, Ben gets 3 parts out of 5 equal parts

i.e. Ben gets = \(\frac{3}{5}\) of the total number of apples = \(\frac{3}{5}\) of 20 = \(\frac{3}{5}\) × 20 = 12 apples

Therefore, Aaron gets 8 apples and Ben gets 12 apples.

In other way we can solve this by the direct method,

Since, the given ratio = 2 : 3 and 2 + 3 = 5

Therefore, Aaron gets = \(\frac{2}{5}\) of the total number of apples

                                = \(\frac{2}{5}\) × 20 apples = 8 apples

and, Ben gets = \(\frac{3}{5}\) of the total number of apples

                    = \(\frac{3}{5}\) × 20 apples = 12 apples


2. Divide $ 120 between David and Jack in the ratio 3 : 5.

Solution:

Ratio of David’s share to Jack’s share = 3 : 5

Sum of the ratio terms = 3 + 5 = 8

Thus we can say David gets 3 parts and Jack gets 5 parts out of every 8 parts.

Therefore, David’s share = \(\frac{3}{8}\) × $ 120 

                                    = $ \(\frac{3 × 120}{8}\)

                                    = $ 45

And, Jack’s share = \(\frac{5}{8}\) × $ 120 

                         = $ \(\frac{5 × 120}{8}\)

                         = $ 75

Therefore, David get $ 45 and Jack gets $ 75.


More solved problems on dividing a quantity in a given ratio:

3. Divide $ 260 among A, B and C in the ratio \(\frac{1}{2}\) : \(\frac{1}{3}\) : \(\frac{1}{4}\).

Solution:

First of all convert the given ratio into its simple form.

Since, L.C.M. of denominators 2, 3 and 4 is 12.

Therefore, \(\frac{1}{2}\) : \(\frac{1}{3}\) : \(\frac{1}{4}\) = \(\frac{1}{2}\) × 12 : \(\frac{1}{3}\) × 12 : \(\frac{1}{4}\) × 12 = 6 : 4 : 3

And, 6 + 4 + 3 = 13

Therefore, A’ share = \(\frac{6}{13}\) of $260 = $ \(\frac{6}{13}\) × 260 = $ 120

B’ share = \(\frac{4}{13}\) of $ 260 = $ \(\frac{4}{13}\) × 260 = $ 80

C’ share = \(\frac{3}{13}\) of $ 260 = $ \(\frac{3}{13}\) × 260 = $ 60

Therefore, A get $ 120, B gets $ 80 and C gets $ 60.


4. Two numbers are in the ratio 10 : 13. If the difference between the numbers is 48, find the numbers.

Solution:

Let the two numbers be 10 and 13

Therefore, the difference between these numbers = 13 – 10 = 3

Now applying unitary method we get,

When difference between the numbers = 3; 1st number = 10

⇒ when difference between the numbers = 1; 1st number = \(\frac{10}{3}\)

⇒ when difference between the numbers = 48; 1st number = \(\frac{10}{3}\) × 48 = 160

Similarly, in the same way we get;

When difference between the numbers = 3; 1st number = 13

⇒ when difference between the numbers = 1; 1st number = \(\frac{13}{3}\)

⇒ when difference between the numbers = 48; 1st number = \(\frac{13}{3}\) × 48 = 208

Therefore, the required numbers are 160 and 208.

The above examples on dividing a quantity in a given ratio will give us the idea to solve different types of problems on ratios.


5. Divide $ 40 in the ratio of 3 : 2

Solution:

Sum of the terms of ratio 3 : 2 = 3 + 2 = 5

1st part of $ 40 = \(\frac{3}{5}\) × $ 40

                       = $ 24

2nd part of $ 40 = \(\frac{2}{5}\) × $ 40

                        = $ 16

You might like these




6th Grade Page

From Dividing a Quantity in a given Ratio to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More