Divide a Number into Three Parts in a Given Ratio

To divide a number into three parts in a given ratio

Let the number be p. It is to be divided into three parts in the ratio a : b : c.

Let the parts be x, y and z. Then, x + y + z = p .................... (i)

and        x = ak, y =bk, z = ck.................... (ii)

Substituting in (i), ak + bk + ck = p

  ⟹ k(a + b + c) = p

Therefore, k = \(\frac{p}{a + b + c}\)

Therefore, x = ak = \(\frac{ap}{a+ b + c}\), y = bk = \(\frac{bp}{a+ b + c}\), z = ck = \(\frac{cp}{a+ b + c}\).

The three parts of p in the ratio a : b : c are

\(\frac{ap}{a+ b + c}\), \(\frac{bp}{a+ b + c}\), \(\frac{cp}{a+ b + c}\).

Solved Examples on Dividing a Number into Three Parts in a Given Ratio:

1. Divide 297 into three parts that are in the ratio 5 : 13 : 15

Solution:

The three parts are \(\frac{5}{5 + 13 + 15}\) ∙ 297, \(\frac{13}{5 + 13 + 15}\) ∙ 297 and \(\frac{15}{5 + 13 + 15}\) ∙ 297

 i.e., \(\frac{5}{33}\) ∙ 297, \(\frac{13}{33}\) ∙ 297 and \(\frac{15}{33}\) ∙ 297 i.e., 45, 117 and 135.

 

2. Divide 432 into three parts that are in the ratio 1 : 2 : 3

Solution:

The three parts are \(\frac{1}{1 + 2 + 3}\) ∙ 432, \(\frac{2}{1 + 2 + 3}\) ∙ 432 and \(\frac{3}{1 + 2 + 3}\) ∙ 432

i.e., \(\frac{1}{6}\) ∙ 432, \(\frac{2}{6}\) ∙ 432 and \(\frac{3}{6}\) ∙ 432

i.e., 72, 144 and 216.

 

3. Divide 80 into three parts that are in the ratio 1 : 3 : 4.

Solution:

The three parts are \(\frac{1}{1 + 3 + 4}\) ∙ 80, \(\frac{3}{1 + 3 + 4}\) ∙ 80 and \(\frac{4}{1 + 3 + 4}\) ∙ 80

i.e., \(\frac{1}{8}\) ∙ 80, \(\frac{3}{8}\) ∙ 80 and \(\frac{4}{8}\) ∙ 80

i.e., 10, 30 and 40.


4. If the perimeter of a triangle is 45 cm and its sides are in the ratio 2: 3: 4, find the sides of the triangle.

Solution:

Perimeter of the triangle = 45 cm

Ratio of the sides of the triangle = 2 : 3 : 4

Sum of ratio terms = (2 + 3 + 4) = 9

The sides of the triangle \(\frac{2}{9}\) × 45 cm, \(\frac{3}{9}\) × 45 cm and \(\frac{4}{9}\) × 45 cm,

i.е., 10 cm, 15 cm and 20 cm. 

Hence, the sides of the triangle are 10 cm, 15 cm and 20 cm.

You might like these

● Ratio and proportion




10th Grade Math

From Divide a Number into Three Parts in a Given Ratio to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More