Arithmetic Progression

An arithmetic progression is a sequence of numbers in which the consecutive terms (beginning with the second term) are formed by adding a constant quantity with the preceding term.

Definition of Arithmetic Progression: A sequence of numbers is known as an arithmetic progression (A.P.) if the difference of the term and the preceding term is always same or constant.

The constant quantity stated in the above definition is called the common difference of the progression. The constant difference, generally denoted by d is called common difference.

an+1 - an = constant (=d) for all n∈ N

From the definition, it is clear that an arithmetic progression is a sequence of numbers in which the difference between any two consecutive terms is constant. 

Examples on Arithmetic Progression:

1. -2, 1, 4, 7, 10 ……………. is an A.P. whose first term is -2 and common difference is 1 - (-2) = 1 + 2 = 3.


2. The sequence {3, 7, 11, 15, 19, 23, 27, …………………} is an Arithmetic Progression whose common difference is 4, since

Second term (7) = First term (3) + 4

Third term (11) = Second term (7) + 4

Fourth term (15) = Third term (11) + 4

Fifth term (19) = Fourth term (15) + 4 etc.

 

3. The sequence {58, 43, 28, 13, -2, -17, -32, …………………} is an Arithmetic Progression whose common difference is -15, since

Second term (43) = First term (58) + (-15)

Third term (28) = Second term (43) + (-15)

Fourth term (13) = Third term (28) + (-15)

Fifth term (-2) = Fourth term (13) + (-15) etc.

 

4. The sequence {11, 23, 35, 47, 59, 71, 83, …………………} is an Arithmetic Progression whose common difference is 4, since

Second term (23) = First term (11) + 12

Third term (35) = Second term (23) + 12

Fourth term (47) = Third term (35) + 12

Fifth term (59) = Fourth term (47) + 12 etc.

 

Algorithm to determine whether a sequence is an Arithmetic Progression or not when its nth term is given:

Step I: Obtain an

Step II: Replace n by n + 1 in an to get an+1.

Step III: calculate an+1 - an.

When an+1 is independent of n then, the given sequence is an Arithmetic Progression. And, when an+1 is not independent of n then, the given sequence is not an Arithmetic Progression.


The following examples illustrate the above concept:

1. Show that the sequence < an> defined by an = 2n + 3 is an Arithmetic Progression. Also fine the common difference.

Solution:

The given sequence an = 2n + 3

Replacing n by (n + 1), we get

an+1 = 2(n + 1) + 3

an+1 = 2n + 2 + 3

an+1 = 2n + 5

Now, an+1 - an = (2n + 5) - (2n + 3) = 2n + 5 - 2n - 3 = 2

Hence, an+1 - an is independent of n, which is equal to 2. 

Therefore, the given sequence an = 2n + 3 is an Arithmetic Progression with common difference 2.

 

2. Show that the sequence < an> defined by an = 3n2 + 2 is not an Arithmetic Progression.

Solution:

The given sequence an = 3n2 + 2

Replacing n by (n + 1), we get

an+1 = 3(n + 1)2 + 2

an+1 = 3(n2 + 2n + 1) + 2

an+1 = 3n2 + 6n + 3 + 2

an+1 = 3n2 + 6n + 5

Now, an+1 - an = (3n2 + 6n + 5) - (3n2 + 2) = 3n2 + 6n + 5 - 3n2 - 2 = 6n + 3

Therefore, an+1 - an is not independent of n.

Hence an+1 - an is not constant.

Thus, the given sequence an = 3n2 + 2 is not an Arithmetic Progression.


Note: To obtain the common difference of a given arithmetic progression we required to subtract its any term from that which follow it. That is,

Common Difference = Any term - Its preceding term.

Arithmetic Progression




11 and 12 Grade Math

From Definition of Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtracting 2-Digit Numbers Video | How to Subtract Two Digit Numbers?

    Apr 01, 25 02:15 AM

    Subtracting 2-Digit Numbers
    In subtracting 2-digit numbers we will subtract or minus a two-digit number from another two-digit number. To find the difference between the two numbers we need to ‘ones from ones’ and ‘tens from

    Read More

  2. PEMDAS Rule | Steps to Simplify the Order of Operation | Simple Rules

    Apr 01, 25 02:10 AM

    Easy and simple way to remember PEMDAS rule!! P → Parentheses first E → Exponent (Powers, Square Roots, Cube Roots, etc.) MD → Multiplication and Division (start from left to right) AS →

    Read More

  3. Worksheet on Simplification | Simplify Expressions | BODMAS Questions

    Apr 01, 25 01:59 AM

    In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

    Read More

  4. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 31, 25 11:35 PM

    What is BODMAS Rule in Math?
    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  5. Subtracting 1-Digit Number | Subtract Two One-Digit Number | Video

    Mar 30, 25 10:16 AM

    Cross Out 6 Objects
    In subtracting 1-digit number we will subtract or minus one-digit number from one-digit number or one-digit number from 2-digit number and find the difference between them. We know that subtraction me…

    Read More