Equivalent Fractions

Equivalent fractions are the fractions having the same value. Same fraction can be represented in many ways. Let us take the following example.

Equivalent Fractions

In picture (i) the shaded part is represented by fraction \(\frac{1}{2}\). 

The shaded part in picture (ii) is represented by fraction \(\frac{2}{4}\). In picture (iii) the same part is represented by fraction \(\frac{4}{8}\). SO, the fraction represented by these shaded portions are equal. Such fractions are called equivalent fractions.

We say that \(\frac{1}{2}\) = \(\frac{2}{4}\) = \(\frac{4}{8}\)

Hence, for a given fraction there can be many equivalent fractions.


Making Equivalent Fractions:

We have seen in the above example that \(\frac{1}{2}\), \(\frac{2}{4}\) and \(\frac{4}{8}\) are equivalent fractions.

Therefore, \(\frac{1}{2}\) can be written as \(\frac{1}{2}\) = \(\frac{1 × 2}{2 × 2}\) = \(\frac{1 × 3}{2 × 3}\) = \(\frac{1 × 4}{2 × 4}\) and so on.

Hence, an equivalent fraction of any given fraction can be obtained by multiplying its numerator and denominator by the same number.

Same way, when the numerator and denominator of a fraction are divided by the same number, we get its equivalent fractions.

\(\frac{1}{2}\) = \(\frac{1 ÷ 1}{2 ÷ 1}\) = \(\frac{2}{4}\) = \(\frac{2 ÷ 2}{4 ÷ 2}\) = \(\frac{3}{6}\) = \(\frac{3 ÷ 3}{6 ÷ 3}\) 

We have,

2/4 = (1 × 2)/(2 × 2)

3/6 = (1 × 3)/(2 × 3)

4/8 = (1 × 4)/(2 × 4)
We observe that 2/4, 3/6 and 4/8 are obtained by multiplying the numerator and denominator of 1/2 by 2, 3 and 4 respectively.

Thus, an equivalent fraction of a given fraction can be obtained by multiplying its numerator and denominator by the same number (other than zero).

2/4 = (2÷ 2)/(4 ÷ 2) = 1/2

3/6 = (3÷ 3)/(6 ÷ 3) = 1/2

4/8 = (4 ÷ 4)/(8 ÷ 4) = 1/2


We observe that if we divide the numerators and denominators of 2/4, 3/6 and 4/8 each by their common factor 2, we get an equivalent fraction 1/2.

Thus, an equivalent fraction of a given fraction can be obtained by dividing its numerator and denominator by their common factor (other than 1), if ant.

Note:

(i) Multiplying its numerator (top) and denominator (bottom) by the same number (other than 0).

(ii) Dividing its numerator (top) and denominator (bottom) by their common factor (other than 1).


For Example:

1. Write three equivalent fraction of 3/5.

Equivalent fractions of 3/5 are:

(3 × 2)/(5× 2) = 6/10,

(3 × 3)/(5 × 3) = 9/15,

(3 × 4)/(5 × 4) = 12/20


Therefore, equivalent fractions of 3/5 are 6/10, 9/15 and 12/20.

2. Write next three equivalent fraction of \(\frac{2}{3}\).

We multiply the numerator and the denominator by 2.

We get, \(\frac{2 × 2}{3 × 2}\) = \(\frac{4}{6}\)

Next, we multiply the numerator and the denominator by 3. We get

\(\frac{2 × 3}{3 × 3}\) = \(\frac{6}{9}\).

Next, we multiply the numerator and the denominator by 4. We get

\(\frac{2 × 4}{3 × 4}\) = \(\frac{8}{12}\).

Therefore, equivalent fractions of \(\frac{2}{3}\) are \(\frac{4}{6}\), \(\frac{6}{9}\) and \(\frac{8}{12}\).



3. Write three equivalent fraction of 1/4.

Equivalent fractions of 1/4 are:

(1× 2)/(4× 2) = 2/8,

(1 × 3)/(4 × 3) = 3/12,

(1× 4)/(4× 4) = 4/16


Therefore, equivalent fractions of 1/4 are 2/8, 3/12 and 4/16.



4. Write three equivalent fraction of 2/15.

Equivalent fractions of 2/15 are:

(2× 2)/(15 × 2) = 4/30,

(2 × 3)/(15 × 3) = 6/45,

(2× 4)/(15 × 4) = 8/60


Therefore, equivalent fractions of 2/15 are 4/30, 6/45 and 8/60.



5. Write three equivalent fraction of 3/10.

Equivalent fractions of 3/10 are:

(3× 2)/(10× 2) = 6/20,

(3 × 3)/(10 × 3) = 9/30,

(3× 4)/(10× 4) = 12/40


Therefore, equivalent fractions of 3/10 are 6/20, 9/30 and 12/40.

● Fraction

Representations of Fractions on a Number Line

Fraction as Division

Types of Fractions

Conversion of Mixed Fractions into Improper Fractions

Conversion of Improper Fractions into Mixed Fractions

Equivalent Fractions

Interesting Fact about Equivalent Fractions

Fractions in Lowest Terms

Like and Unlike Fractions

Comparing Like Fractions

Comparing Unlike Fractions

Addition and Subtraction of Like Fractions

Addition and Subtraction of Unlike Fractions

Inserting a Fraction between Two Given Fractions





Numbers Page

6th Grade Page

From Equivalent Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Basic Concept of Fractions | Concept of Half, OneThird | Exa

    Jan 28, 25 01:39 PM

    One-half
    Concept of fractions will help us to express different fractional parts of a whole. One-half When an article or a collection of objects is divided into two equal parts is called as half of the whole.

    Read More

  2. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Jan 28, 25 12:32 PM

    3/8 Coloured Mangoes
    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Jan 28, 25 12:14 AM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Representation of a Fraction | Numerator/Denominator | Simple Fraction

    Jan 27, 25 02:29 PM

    Representation of a Fraction
    Representation of a fraction is discussed here. In a simple fraction, there is a horizontal line. Above this line we write a number which is called the numerator. Below this line we write another numb…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Jan 27, 25 01:52 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More