Proportion Problems

We will learn how to solve proportion problems. We know, the first term (1st) and the fourth term (4th) of a proportion are called extreme terms or extremes, and the second term (2nd) and the third term (3rd) are called middle terms or means.

Therefore, in a proportion, product of extremes  = product of middle terms.

Solved examples:

1. Check whether the two ratios form a proportion or not:

(i) 6 : 8 and 12 : 16;                           (ii) 24 : 28 and 36 : 48

Solution:

(i) 6 : 8 and 12 : 16

6 : 8 = 6/8 = 3/4

12 : 16 = 12/16 = 3/4

Thus, the ratios 6 : 8 and 12 : 16 are equal.

Therefore, they form a proportion.

(ii) 24 : 28 and 36 : 48

24 : 28 = 24/28 = 6/7

36 : 48 = 36/48 = 3/4

Thus, the ratios 24 : 28 and 36 : 48 are unequal.

Therefore, they do not form a proportion.


2. Fill in the box in the following so that the four numbers are in proportion.

5, 6, 20, ____

Solution:

5 : 6 = 5/6

20 : ____ = 20/____

Since the ratios form a proportion.

Therefore, 5/6 = 20/____

To get 20 in the numerator, we have to multiply 5 by 4. So, we also multiply the denominator of 5/6, i.e. 6 by 4

Thus, 5/6 = 20/6 × 4 = 20/24

Hence, the required numbers is 24


3. The first, third and fourth terms of a proportion are 12, 8 and 14 respectively.  Find the second term.

Solution:

Let the second term be x.

Therefore, 12, x, 8 and 14 are in proportion i.e., 12 : x = 8 : 14

⇒ x × 8 = 12 × 14, [Since, the product of the means = the product of the extremes]

⇒ x = (12 × 14)/8

⇒ x = 21

Therefore, the second term to the proportion is 21.

More worked-out proportion problems:

4. In a sports meet, groups of boys and girls are to be formed. Each group consists of 4 boys and 6 girls. How many boys are required, if 102 girls are available for such groupings?

Solution:

Ratio between boys and girls in a group = 4 : 6 = 4/6 = 2/3 = 2 : 3

Let the number of boys required = x

Ratio between boys and girls = x : 102

So, we have, 2 : 3 = x : 102

Now, product of extremes = 2 × 102 = 204

Product of means = 3 × x

We know that in a proportion product of extremes = product of means

i.e., 204 = 3 × x

If we multiply 3 by 68, we get 204 i.e., 3 × 68 = 204

Thus, x = 68

Hence, 68 boys are required.


5. If a : b = 4 : 5 and b : c = 6 : 7; find a : c.

Solution:

a : b = 4 : 5

⇒ a/b = 4/5

b : c = 6 : 7

⇒ b/c  = 6/7

Therefore, a/b × b/c = 4/5 × 6/7

⇒ a/c = 24/35

Therefore, a : c = 24 : 35


6. If a :  b = 4 : 5 and b : c = 6 : 7; find a : b : c.

Solution:

We know that of both the terms of a ratio are multiplied by the same number; the ratio remains the same.

So, multiply each ratio by such a number that the value of b (the common term in both the ratios) acquires the same value.

Therefore, a :  b = 4 : 5 = 24 : 30, [Multiplying both the terms by 6]

And, b : c = 6 : 7 = 30 : 35, [Multiplying both the terms by 5]

Clearly,; a : b : c = 24 : 30 : 35

Therefore, a : b : c = 24 : 30 : 35

From, the above solved proportion problems we get the clear concept how to find whether the two ratios form a proportion or not and word problems.









6th Grade Page

From Proportion Problems to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More