Perimeter and Area of Irregular Figures

Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures.


1. Find the perimeter of the given figure.

Perimeter of Irregular Figures

Solution:

Perimeter = AB + BC + CD + DE + EF + FG + GA

          = 3.2 cm + 1.5 cm + 5 cm + 5 cm + 1.5 cm + 3.2 cm + 2 cm

          = 21.4 cm

2. Find the perimeter of each of the following figures:

Perimeter of Irregular Shapes

(i) Perimeter of the region = (2 + 19 + 2 + 9 + 10 + 3 + 10 + 7) cm

                                       = 62 cm.


(ii) Perimeter = AB + BC + CD + DE + EF + AF

                    = (100 + 120 + 90 + 45 + 60 + 80) m

                    = 495 m .


3. The figure PQRSTU is a hexagon.

Perimeter and Area of Irregular Figures

PS is a diagonal and QY, RO, TX and UZ are the respective distances of the points Q, R, T and U from PS. If PS = 600 cm, QY = 140 cm, RO = 120 cm, TX = 100 cm, UZ = 160 cm, PZ = 200 cm, PY = 250 cm, PX = 360 cm and PO = 400 cm. Find the area of the hexagon PQRSTU.

Solution:

Area of the hexagon PQRSTU = area of ∆PZU + area of trapezium TUZX + area of ∆TXS + area of ∆PYQ + area of trapezium QROY + area of ∆ROS

 = {\(\frac{1}{2}\) × 200 × 160 + \(\frac{1}{2}\) (100 + 160)(360 – 200) + \(\frac{1}{2}\) (600 – 360) × 100 + \(\frac{1}{2}\) × 250 × 140 + \(\frac{1}{2}\) (120 + 140) (400 – 250) + \(\frac{1}{2}\) (600 – 400) × 120} cm\(^{2}\)

= (16000 + 130 × 160 + 120 × 100 + 125 × 140 + 130 × 150 + 100 × 120) cm\(^{2}\)

= (16000 + 20800 + 12000 + 17500 + 19500 + 12000) cm\(^{2}\)

= 97800 cm\(^{2}\)

= 9.78 m\(^{2}\)


4. In a square lawn of side 8 m, an N-shaped path is made, as shown in the figure. Find the area of the path.

Area and Perimeter of Irregular Figures

Solution:

Required area = area of the rectangle PQRS + area of the parallelogram XRYJ + area of the rectangle JKLM

                     = (2 × 8 + PC × BE + 2 × 8) m\(^{2}\)

                     = (16 + 2 × 4 + 16) cm\(^{2}\)

                     = 40 m\(^{2}\)


We can solve this problem using another method:

Required area = Area of the square PSLK – Area of the ∆RYM – Area of the ∆XQJ

                     = [8 × 8 - \(\frac{1}{2}\){8 – (2 + 2)} × 6 - \(\frac{1}{2}\){8 – (2 + 2)} × 6] m\(^{2}\)

                     = (64 – 12 – 12) m\(^{2}\)

                      = 40 m\(^{2}\)

You might like these






9th Grade Math

From Perimeter and Area of Irregular Figures to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More