Finding cos Value from Trigonometric Table

We know the values of the trigonometric ratios of some standard angles, viz, 0°, 30°, 45°, 60° and 90°. While applying the concept of trigonometric ratios in solving the problems of heights and distances, we may also require to use the values of trigonometric ratios of nonstandard angles, for example, sin 54°, sin 63° 45′, cos 72°, cos 46° 45′ and tan 48°. The approximate values, correct up to 4 decimal places, of natural sines, natural cosines and natural tangents of all angles lying between 0° and 90°, are available in trigonometric tables.

Reading Trigonometric Tables

Trigonometric tables consist of three parts.

(i) On the extreme left, there is a column containing 0 to 90 (in degrees).

(ii) The degree column is followed by ten columns with the headings

           0′, 6′, 12′, 18′, 24′, 30′, 36′, 42′, 48′ and 54′ or

           0.0°, 0.1°, 0.2°, 0.3°, 0.4°, 0.5°, 0.6°, 0.7°, 0.8° and 0.9°

(iii) After that, on the right, there are five columns known as mean difference columns with the headings 1′, 2′, 3′, 4′ and 5′.

Note: 60′ = 60 minutes = 1°.

Table of Natural Cosines, Trigonometric Table

1. Reading the values of cos 67°

To locate the value of cos 67°, look at the extreme left column. Start from the top and move downwards till we reach 67.

We want the value of cos 67°, i.e., cos 67° 0′. Now, move to the right in the row of 67 and reach the column of 0′.

We find 0.3907

Therefore, cos 67° = 0.3907.

 

2. Reading the values of cos 67° 48′

To locate the value of cos 67° 48′, look at the extreme left column. Start from the top and move downwards till you reach 67.

Now, move to the right in the row of 67 and reach the column of 48′.

We find 3778 i.e., 0. 3778

Therefore, cos 67° 48′ = 0. 3778.

 

3. Reading the values of cos 67° 41′

To locate the value of cos 67° 41′, look at the extreme left column. Start from the top and move downwards till you reach 67.

Now, move to the right in the row of 67 and reach the column of 36′.

We find 3811 i.e., 0.3811

So,

cos 67° 41′ = 0.3811 - mean difference for 5′ 

                 = 0.3811

                  -       14 [Subtraction, because cos 67° 41′ < cos 67° 36′]

                    0.3797

Therefore, cos 67° 41′ = 0.3797.



Conversely, if cos θ = 0.1097 then θ = cos 83° 42′ because in the table, the value 0.1097 corresponds to the column of 42′ in the row of 83, i.e., 83°.






10th Grade Math

From Finding cos Value from Trigonometric Table to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Conversion of a Decimal Fraction into a Fractional Number | Decimals

    Apr 22, 25 02:52 AM

    We will discuss here about the working rule for the conversion of a decimal fraction into a fractional number. The rules of converting decimal number to fraction are

    Read More

  2. Conversion of Fractions to Decimals Numbers | Fractions as Decimals

    Apr 22, 25 02:19 AM

    We will discuss here about the working rule for the conversion of fractions to decimal numbers. The rules for converting fractions with denominators 10, 100, 1000, etc. into decimal fraction

    Read More

  3. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Apr 20, 25 11:46 AM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  4. Word Problems on Division | Examples on Word Problems on Division

    Apr 20, 25 11:17 AM

    Word Problem on Division
    Word problems on division for fourth grade students are solved here step by step. Consider the following examples on word problems involving division: 1. $5,876 are distributed equally among 26 men. H…

    Read More

  5. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Apr 20, 25 10:27 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More