Equiradical Surds

If two or more surds are of the same order they are said to be equiradical.

Surds are not equiradical when their surd indices are different.

Thus, √5, √7, 2√5, √x and 10^1/2 are equiradical surds.

But √2, ∛7, ∜6 and 9^2/5 are not equiradical.

Note: Non-equiradical surds can be reduced to equiradical surds.

Thus, non-equiradical surds √3, ∛3, ∜3 become \(\sqrt[12]{729}\), \(\sqrt[12]{81}\), \(\sqrt[12]{27}\) respectively when they are reduced to equiradical surds.

If x is a positive integer with nth root, then \(\sqrt[n]{x}\) is a surd of nth order when the value of \(\sqrt[n]{x}\)  is irrational. In \(\sqrt[n]{x}\)  expression n is the order of surd and x is called as radicand. For example ∛7 is surd of order 3.

When two or more surds have the same order, they called as Equiradical Surds. For example √2, √3, √5, √7, √x are the surds of order 2. So these surds are equiradical.

When two or more surds don’t have the same order they are called non-equiradical surds. For example√5, √7, ∛10, ∛17, ∜9, ∜20 these surds are non-equiradical surds as they have different orders as 2,3 and 4. 

Non-equiradical surds can be expressed in the form of equiradical surds. For example √2, ∛3 and ∜5 are non-equiradical surds with order 2,3 and 4. If we can change the indices of surds such that all the surds  can be converted in to a same order, then non-equiradical surds can be expressed in the form of equiradical surds. For this case with orders of 2, 3, 4 we can change surds in the a same order if we change it to the LCM (Lowest Common Multiple) of order and that is 12.

Changing the order of first surd from 2 to 12, √2 = 2\(^{1/2}\) = 2\(^{6/123}\) = 64\(^{1/12}\) = \(\sqrt[12]{64}\)

Changing the order of second surd from 3 to 12, ∛3 = 3\(^{1/3}\) = 3 \(^{4/12}\) = 81\(^{1/12}\) = \(\sqrt[12]{81}\)

Changing the order of third surd from 4 to 12, ∜5 = 5\(^{1/4}\) = 5\(^{3/12}\) = 125\(^{1/12}\) = \(\sqrt[12]{125}\)

So √2, ∛3 and ∜5 are the non-equiradical surds which can be expressed in the form of equiradical surds as \(\sqrt[12]{64}\), \(\sqrt[12]{81}\), \(\sqrt[12]{125}\)

In two equiradical surds \(\sqrt[n]{x}\) and \(\sqrt[n]{y}\)\(\sqrt[n]{x}\) > \(\sqrt[n]{y}\) when x > y.  For example ∛7 and ∛5 are the two equiradical surds, as 7 > 5, so ∛7 > ∛5. The same comparison can done for more than two equiradical surds also. 

For non-equiradical surds if we change it to the form of equiradical surds, then similarly we can compare the values of surds like it is compared for the case of two equiradical numbers. For example ∛7 and ∜5 are two non-equiradical surds. If we need find out ∛7 > ∜5 or ∜5 > ∛7, then we first need to express the surds in to equiradical surds. As the orders of the surds are 3 and 4, LCM of 3 and 4 is 12, so if we make the surds in order 12 we can find out which one is greater value.

∛7 = 7\(^{1/3}\) = 7\(^{4/12}\) = 2401\(^{1/12}\) = \(\sqrt[12]{2401}\)

∜5 = 5\(^{1/4}\) = 5\(^{3/12}\) = 125\(^{1/12}\) = \(\sqrt[12]{125}\)

As 2401 > 125, so ∛7 > ∜5.


Solved Example:

Arrange the surds in descending order.

√10, ∛25, ∜40

Solution:

√10, ∛25, ∜40

Surds are in the order of 2, 3, and 4. So the surds are non-equiradical surds. To arrange the surds in descending order, the surds need to be expressed in the form of equiradical surds. As the LCM of 2, 3 and 4 is 12, so the order of the equiradical surds will be 12.

√10 = 10\(^{1/2}\) = 10\(^{6/12}\) = 1000000\(^{1/12}\)

 = \(\sqrt[12]{1000000}\)

∛25 = 25\(^{1/3}\) = 25\(^{4/12}\) = 390625\(^{1/12}\) = \(\sqrt[12]{390625}\)

∜40 = 40\(^{1/4}\) = 40\(^{3/12}\) = 64000\(^{1/12}\)

= \(\sqrt[12]{64000}\)

As 1000000 > 390625 > 64000, the ascending order will be √10, ∛25, ∜40.




11 and 12 Grade Math

From Equiradical Surds to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More