Comparison of Ratios

In comparison of ratios, we first need to convert them into like fractions by using the following steps and then compare them.

Step I: Obtain the given ratios.

Step II: Now we express each of the given ratios as a fraction in the simplest form.

Step III: Find the L.C.M (least common multiple) of the denominators of the fractions obtained in the above step (Step II).

Step IV: Obtain the first fraction and its denominator. Divide the L.C.M (least common multiple) obtained in the above step (Step III) by the denominator to get a number z (say).

Now, multiply the numerator and denominator of the fraction by the z (L.C.M). Similarly apply the same procedure to the all other fraction.

In other words convert each fraction to its equivalent fractions with denominator equal to the L.C.M (least common multiple).

Thus, the denominators of all the fractions are be same.

Step V: Compare the numerators of the equivalent fractions whose denominators are same.

Compare the numerators of the fractions obtained in the above step (Step IV). The fraction having larger numerator will be larger than the other fraction.

Two or more ratios can be compared by writing their equivalent fractions with common denominators.


Solved examples of comparison of ratios:

1. Compare the ratios 4 : 5 and 2 : 3.

Solution:

Express the given ratios as fraction

4 : 5 = 4/5  and 2 : 3 =2/3

Now find the L.C.M (least common multiple) of 5 and 3

The L.C.M (least common multiple) of 5 and 3 is 15.

Making the denominator of each fraction equal to 15, we have

4/5 = (4 ×3)/(5 ×3) = 12/15 and 2/3 = (2 ×5)/(3 ×5) = 10/15

Clearly, 12 > 10

 Now, 12/15 > 10/15

Therefore, 4 : 5 > 2 : 3.


2. Compare the ratios 5 : 6 and 7 : 9.

Solution:

Express the given ratios as fraction

5 : 6 = 5/6  and 7 : 9 =7/9

Now find the L.C.M (least common multiple) of 6 and 9

The L.C.M (least common multiple) of 6 and 9 is 18.

Making the denominator of each fraction equal to 18, we have

5/6  = (5 ×3)/(6 ×3) = 15/18 and 7/9  = (7 ×2)/(9 ×2) = 14/18

Clearly, 15 > 14

 Now, 15/18 > 14/18

Therefore, 5 : 6 > 7 : 9.


3. Compare the ratios 1.2 : 2.5 and 3.5 : 7.

Solution:

1.2 : 2.5 = 1.2/2.5 and 3.5 : 7 =3.5/7

1.2/2.5 = (1.2 ×10)/(2.5 ×10 ) = 12/25 and 3.5/7 = (3.5 ×10)/(7 ×10) = 35/70 = 1/2

[We removed the decimal point from the ratios now, we will compare the ratio]

Now find the L.C.M (least common multiple) of 25 and 2

The L.C.M (least common multiple) of 25 and 2 is 50.

Making the denominator of each fraction equal to 50, we have

= 12/25 = (12 ×2)/(25 ×2)  = 24/50 and 1/2 = (1 ×25)/(2 ×25)  = 25/50

Now, 25/50 >  24/50

Therefore,  3.5 : 7 > 1.2 : 2.5.










6th Grade Page

From Comparison of Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 30, 25 01:11 PM

    What is BODMAS Rule in Math?
    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. Subtracting 1-Digit Number | Subtract Two One-Digit Number | Video

    Mar 30, 25 10:16 AM

    Cross Out 6 Objects
    In subtracting 1-digit number we will subtract or minus one-digit number from one-digit number or one-digit number from 2-digit number and find the difference between them. We know that subtraction me…

    Read More

  3. Divisible by 10 | Test of Divisibility by 10 Video | Rules | Examples

    Mar 29, 25 03:06 PM

    Divisible by 10
    Divisible by 10 is discussed below. A number is divisible by 10 if it has zero (0) in its units place. Consider the following numbers which are divisible by 10, using the test of divisibility by 10:

    Read More

  4. Divisible by 9 | Test of Divisibility by 9 | Rules | Video | Examples

    Mar 29, 25 02:55 PM

    Divisible by 9
    A number is divisible by 9, if the sum is a multiple of 9 or if the sum of its digits is divisible by 9. Consider the following numbers which are divisible by 9, using the test of divisibility by 9:

    Read More

  5. Divisible by 6 | Rules for Test of Divisibility by 6 Video | Examples

    Mar 29, 25 02:48 PM

    Divisible by 6
    Divisible by 6 is discussed below: A number is divisible by 6 if it is divisible by 2 and 3 both. Consider the following numbers which are divisible by 6, using the test of divisibility by 6: 42

    Read More