Worksheet on Matrix Multiplication

Practice the questions given in the Worksheet on Matrix Multiplication.

1. Let A = \(\begin{bmatrix} -10 & 1\\ 3 & -2 \end{bmatrix}\), B = \(\begin{bmatrix} 6\\ -7 \end{bmatrix}\). Find AB and BA if possible.

2. Let A = \(\begin{bmatrix} 1 & -1\\ 3 & 4 \end{bmatrix}\), B = \(\begin{bmatrix} 0 & 1\\ 2 & -3 \end{bmatrix}\).

(i) Find AB and BA if possible.

(ii) Verify if AB = BA.

(iii) Find A2.

(iv) Find AB2.

3. If A = \(\begin{bmatrix} sin \, \, 30^{\circ} + cos \, \, 60^{\circ} & tan \, \, 45^{\circ} - cot \, \, 45^{\circ}\\ cos \, \, 90^{\circ} & sin \, \, 90^{\circ} \end{bmatrix}\) then prove that A3 = A2 =A.

4. If A = \(\begin{bmatrix} cos \, \, \theta & -sin \, \, \theta\\ sin \, \, \theta & cos \, \, \theta \end{bmatrix}\) and B = \(\begin{bmatrix} cos \, \, \theta & sin \, \, \theta\\ -sin \, \, \theta & cos \, \, \theta \end{bmatrix}\), then prove that AB = I, where I is the unit matrix.

5. Let A = \(\begin{bmatrix} -2 & 9\\ 1 & 3 \end{bmatrix}\), B = \(\begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}\) and C = \(\begin{bmatrix} -1 & 2\\ 3 & -1 \end{bmatrix}\).

(i) Find (AB)C.

(ii) Prove that A(BC) = (AB)C.

Worksheet on Matrix Multiplication


Answer:


1. AB = \(\begin{bmatrix} -67\\ 32 \end{bmatrix}\); BA is not possible because number of columns in B ≠ number of rows in A

2. (i) AB = \(\begin{bmatrix} -2 & 4\\ 8 & -9 \end{bmatrix}\); B = \(\begin{bmatrix} 3 & 4\\ -7 & -14 \end{bmatrix}\)

(ii) AB ≠ BA.

(iii) \(\begin{bmatrix} -2 & -5\\ 15 & 13 \end{bmatrix}\)

(iv) \(\begin{bmatrix} 8 & -14\\ -18 & 35 \end{bmatrix}\)


5. (i) \(\begin{bmatrix} 14 & 7\\ 8 & 4 \end{bmatrix}\)






10th Grade Math

From Worksheet on Matrix Multiplication to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?