Loading [MathJax]/jax/output/HTML-CSS/jax.js

Word Problems on Straight Lines

Here we will solve different types of word problems on straight lines.

1.Find the equation of a straight line that has y-intercept 4 and is perpendicular to straight line joining (2, -3) and (4, 2).

Solution:

Let m be the slope of the required straight line.

Since the required straight line is perpendicular to the line joining P (2, -3) and Q (4, 2).

Therefore,

m × Slope of PQ = -1

⇒ m ×  2+342 = -1

⇒ m ×  52 = -1

⇒ m = -25

The required straight lien cut off an intercept of length 4 on y-axis.

Therefore, b = 4

Hence, the equation of the required straight line is y = -25x + 4

⇒ 2x + 5y - 20 = 0

 

2. Find the co-ordinates of, the middle point of the portion of the line 5x + y = 10 intercepted between the x and y-axes.

Solution:    

The intercept form of the given equation of the straight line is,

5x + y = 10

Now dividing both sides by 10 we get,

5x10+ y10 = 1        

x2 + y10 = 1.

Therefore, it is evident that the given straight line intersects the x-axis at P (2, 0) and the y-axis at Q (0, 10).

Therefore, the required co-ordinates of the middle point of the portion of the given line intercepted between the co-ordinate axes = the co-ordinates of the middle point of the line-segment PQ

= (2+02, 0+102)

= (22, 102)

= (1, 5)


More examples on word problems on straight lines.

3. Find the area of the triangle formed by the axes of co-ordinates and the straight line 5x + 7y = 35.

Solution:  

The given straight line is 5x + 7y = 35.

The intercept form of the given straight line is,

5x + 7y = 35

5x35+ 7y35 = 1, [Dividing both sides by 35]      

x7 + y5 = 1.

Therefore, it is evident that the given straight line intersects the x-axis at P (7, 0) and the y-axis at Q (0, 5).

Thus, if o be the origin then, OP = 7 and OQ = 5

Therefore, the area of the triangle formed by the axes of co-ordinates and the given line = area of the right-angled ∆OPQ

= ½ |OP × OQ|= ½ ∙ 7 . 5 = 352 square units.

 

4. Prove that the points (5, 1), (1, -1) and (11, 4) are collinear. Also find the equation of the straight line on which these points lie.

Solution:

Let the given points be P (5, 1), Q (1, -1) and R (11, 4). Then the equation of the line passing through P and Q is

y - 1 = 1115(x - 5)

⇒ y - 1 = 24(x - 5)

⇒ y - 1 = 12(x - 5)

⇒ 2(y - 1) = (x - 5)

⇒ 2y - 2 = x - 5

⇒ x - 2y - 3 = 0

Clearly, the point R (11, 4) satisfies the equation x - 2y - 3 = 0. Hence the given points lie on the same straight line, whose equation is x - 2y - 3 = 0.

 The Straight Line






11 and 12 Grade Math 

From Word Problems on Straight Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Multiplication and Division of Fractions Worksheet | Ans

    Apr 10, 25 03:17 PM

    In properties of multiplication and division of fractions worksheet you will get different types of questions based on properties of multiplication of fractional numbers and properties of division of…

    Read More

  2. Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

    Apr 09, 25 01:44 AM

    In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

    Read More

  3. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Apr 08, 25 01:13 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  4. Multiplication | How to Multiply a One, Two or Three-digit Number?

    Apr 08, 25 01:08 PM

    In multiplication we know how to multiply a one, two or three-digit number by another 1 or 2-digit number. We also know how to multiply a four-digit number by a 2-digit number. We also know the differ…

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Apr 08, 25 12:43 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More