Loading [MathJax]/jax/output/HTML-CSS/jax.js

Trigonometric Ratios of Complementary Angles

Complementary angles and their trigonometric ratios:

We know from geometry if the sum of two angles is 90°, then one angle is called the complement of the other.

Two angles A and B are complementary if A + B = 90°. So, B = 90° - A.

For example, as 30° + 60° = 90°, 60° is called the complement of 30° and conversely, 30° is called the complement of 60°. 

Thus 27° is the complement of 60°; 43.5° is the complement of 46.5° etc.

Thus in general, (90° - θ) and θ are complementary angles. Trigonometric ratios of (90° - θ) are convertible to trigonometric ratios of θ.

Trigonometric Ratios of 90° - θ in Terms of Trigonometric ratios of θ

Let us see how we can find the trigonometrical ratios of 90° - θ, if we know those of θ°. 

Let PQR be a right-angled triangle in which ∠Q is the right angle.

Complementary Angles and their Trigonometric Ratios

Let ∠PRQ = θ. Then, ∠QPR = 180° - (90° + θ) = 90° - θ.

1. sin (90° - θ) = cos θ

Here, sin (90° - θ) = QRPR and cos θ = QRPR

Therefore, sin (90° - θ) = cos θ.


2. cos (90° - θ) = sin θ

Here, cos (90° - θ) = PQPR and sin θ = PQPR

Therefore, cos (90° - θ) = sin θ.


3. tan (90° - θ) = cot θ

Here, tan (90° - θ) = QRPQ and cot θ = QRPQ

Therefore, tan (90° - θ) = cot θ.


4. csc (90° - θ) = sec θ

Here, csc (90° - θ) = PRQR and sec θ = PRQR

Therefore, csc (90° - θ) = sec θ


5. sec (90° - θ) = csc θ

Here, sec (90° - θ) = PRPQ and csc θ = PRPQ

Therefore, sec (90° - θ) = csc θ.


6. cot (90° - θ) = tan θ

Here, cot (90° - θ) = PQQR and tan θ = PQQR

Therefore, cot (90° - θ) = tan θ.


Thus, we have the following conversions of trigonometric ratios of (90° - θ) in terms of trigonometric ratios of θ.

sin (90° - θ) = cos θ

cos (90° - θ) = sin θ

tan (90° - θ) = cot θ

cot (90° - θ) = tan θ

sec (90° - θ) = csc θ

csc (90° - θ) = sec θ

For example, cos 37° can be expressed as sine of the complementary angle of 37° because

                                cos 37° = cos (90° - 53°) = sin 53°.


Note: The measure of an angle can be expressed in degrees (°) as well as in radians. The measure of an angle is π radians (where π is 3.14, approximately) if its measure in degrees is 180°. Thus, 180° = π radians. This is also written as 180° = π.

Therefore, 1° = π180

              30° = π6

              45° = π4

              60° = π3

              90° = π2, etc.


Therefore, we can write sin (90° - β) = sin (π2 – β) = cos β

                                   cos (90° - β) = cos (π2 – β) = sin β

                                   tan (90° - β) = tan (π2 – β) = cot β

                                   csc (90° - β) = csc (π2 – β) = sec β

                                   sec (90° - β) = sec (π2 – β) = csc β

                                   cot (90° - β) = cot (π2 – β) = tan β.

Trigonometric Ratios of Complementary Angles

The values of trigonometrical ratios of 30° and 60°, which are complementary angles are compared below. This will help us to have a clear understanding of the relations shown before. 

sin 30° = cos 60° = 12

cos 30° = sin 60° = 32

tan 30° = cot 60° = 33

csc 30° = sec 60° = 2

sec 30° = csc 60° = 233

cot 30° = tan 60° = 3


Similarly, from the complementary angles formulae we get

sin 45° = cos 45° = 22

tan 45° = cot 45° = 1

csc 45 = sec 45° = 2

tan 45° = cot 45° = 1

Again, 

sin 90° = cos 0° = 1

cos 90° = sin 0° = 0


Problems on Trigonometric Ratios of Complementary Angles

Problems on evaluation using trigonometric ratios of complementary angles

1. Evaluate without using trigonometric table: sin25°2cos65°

Solution:

sin25°2cos65°

= sin25°2cos(90°25°)

= sin25°2sin25°; [since, cos (90° - θ) = sin θ]

12.



2. Evaluate without using trigonometric table: tan 38° ∙ tan 52°

Solution:

tan 38° ∙ tan 52°

= tan 38° ∙ tan (90° - 38°)

= tan 38° ∙ cot 38°; [Since, tan (90° - θ) = cot θ]

= tan 38° ∙ 1tan38°

= 1.


3. Evaluate without using trigonometric table: sin67°cos23° - sec12°csc78°

Solution:

sin67°cos23° - sec12°csc78°

= sin67°cos(90°67°) - sec12°csc(90°12°)

= sin67°cos(90°67°) - sec12°csc(90°12°)

= sin67°sin67° - sec12°sec12°

[Since, cos (90° - θ) = sin θ and csc (90° - θ) = sec θ]

= 1 - 1

= 0.


4. If cos 39° = xx2+y2, what is the value of tan 51°?

Solution:

Given that cos 39° = xx2+y2

Therefore, sin2 39° = 1 -  x2x2+y2

                            = x2+y2x2x2+y2

                            = y2x2+y2

Therefore, sin 39° = yx2+y2, (negative value is not acceptable)

Now, tan 51° = tan (90° - 39°)

                    =  cot 39°

                    = cos39°sin39°

                    = cos 39° ÷ sin 39°

                    = xx2+y2 ÷ yx2+y2

                    = xy.



5. If cos 37° = x then find the value of tan 53°.

Solution:

tan 53°

= tan (90° - 37°)

= cot 37°; [Since, tan (90° - θ) = cot θ]

= cos37°sin37°

= xsin37° ................ (i)


Now, sin2 37° = 1 - cos2 37°; [since, 1 - cos2 θ = sin2 θ]

Therefore, sin 37° = 1cos237°

                           = 1x2

Therefore, from (i), tan 53° = x1x2.


6. If sec  ϕ = csc  β and 0° < (ϕ, β) < 90°, find the value of sin (ϕ + β).

Solution:

sec  ϕ = csc  β

1cosϕ = 1sinβ

⟹ cos ϕ = sin β

⟹ cos ϕ = cos (90° - β)

⟹ ϕ = 90° - β

⟹ ϕ + β = 90°

Therefore, sin (ϕ + β) = sin 90° = 1.


7. Find the value of sin2 15° + sin2 25° + sin2 33° + sin2 57° + sin2 65° + sin2 75°.

Solution:

sin2 (90° - 75°) + sin2 (90° - 65°) + sin2 (90° - 57°) + sin2 57° + sin2 65° + sin2 75°.

= cos2 75° + cos2 65° + cos2 57° + sin2 57° + sin2 65° + sin2 75°.

= (sin2 57° + cos2 75°) + (sin2 65° + cos2 65°) + (sin2 57° + cos2 57°)

= 1 + 1 + 1; [Since, sin2 θ + cos2 θ = 1]

= 3.


8. If tan 49° ∙ cot (90° - θ) = 1, find θ.

Solution:

tan 49° ∙ cot (90° - θ) = 1

⟹ tan 49° ∙ tan θ = 1; [Since, cot (90° - θ) = tan θ]

⟹ tan θ = 1tan49°

⟹ tan θ = cot 49°

⟹ tan θ = cot (90° - 41°)

⟹ tan θ = tan 41°

⟹ θ = 41°

Therefore, θ = tan 41°.


Problems on establishing equality using trigonometric ratios of complementary angles

9. Prove that sin 33° cos 77° = cos 57° sin 13°

Solution:

LHS = sin 33° cos 77°

       = sin (90° - 57°) cos (90° - 13°)

       = cos 57° sin 13°

       = RHS. (Proved).


10. Prove that tan 11° + cot 63° = tan 27° + cot 79°

Solution:

LHS = tan 11° + cot 63°

       = tan (90° - 79°) + cot (90° - 27°)

       = cot 79° + tan 27°

       = tan 27° + cot 79°

       = RHS. (Proved).


Problems on establishing identities and simplification using trigonometric ratios of complementary angles

11. If P and Q are two complementary angles, show that

(sin P + sin Q)2 = 1 + 2 sin P cos P

Solution:

Since P are Q are complementary angles,

Therefore, sin Q = sin (90° - P) = cos P

Therefore, (sin P + sin Q)2 = (sin P + cos P)2 

                                       = sin2 P + cos2 P + 2 sin P cos P

                                       = (sin2 P + cos2 P) + 2 sin P cos P

                                       = 1 + 2 sin P cos P


12. Simplify: sin(π2θ)cot(π2θ)sinθ

Solution: 

sin(π2θ)cot(π2θ)sinθ

cosθtanθsinθ, [Since sin (π2 - θ) = sin (90° - θ) = cos θ and cot (π2 - θ) = cot (90° - θ) = tan θ]

= cosθsinθcosθsinθ

sinθsinθ

= 1.


13. Prove that, sin2 7° + sin2 83°

Solution:

sin 83° = sin (90° - 7°) 

           = cos 7°; [since, sin (90° - θ) = cos θ]

LHS = sin2 7° + sin2 83°

      = sin2 7° + cos2 7°, [Since, sin 83° = cos 7°]

      = 1 = RHS (Proved).


14. In a ∆PQR, prove that sin P+Q2 = cos R2.

Solution:

We know that sum of the three angles of a triangle is 180°.

i,e., P + Q + R = 180°

⟹  P + Q = 180° - R

Now, 

LHS = sin P+Q2 

      = sin 180°R2 

      = sin (90° - R2)

      = cos R2 = RHS (Proved). 


15. Prove that tan 15° + tan 75° = sec215°sec215°1.

Solution:

LHS = tan 15° + tan (90° - 15°)

       = tan 15° + cot 15°

       = tan 15° + 1tan15°

       = tan215°+1tan15°

       = sec215°sec215°1 = RHS (Proved).


Learn more about Trigonometrical Ratios of Complementary Angles.





10th Grade Math

From Trigonometric Ratios of Complementary Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 28, 25 02:17 AM

    What is BODMAS Rule in Math?
    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. Divisibility Rules From 2 to 18 | Math Divisibility Test | Videos |

    Mar 27, 25 01:04 PM

    Divisibility Rules
    To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4…

    Read More

  3. Divisible by 2 Video |Test of Divisibility by 2 Trick| Rules| Examples

    Mar 27, 25 11:10 AM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More

  4. Divisible by 3 | Test of Divisibility by 3 Trick | Rules | Video

    Mar 27, 25 11:01 AM

    Divisible by 3
    A number is divisible by 3, if the sum of its all digits is a multiple of 3 or divisibility by 3. Consider the following numbers to find whether the numbers are divisible or not divisible by 3: (i) 54…

    Read More

  5. Divisible by 4 | Test of Divisibility by 4 Trick | Rules | Video

    Mar 27, 25 11:00 AM

    Divisible by 4
    A number is divisible by 4 if the number is formed by its digits in ten’s place and unit’s place (i.e. the last two digits on its extreme right side) is divisible by 4. Consider the following numbers…

    Read More