The Cube Roots of Unity

We will discuss here about the cube roots of unity and their properties.

Suppose let us assume that the cube root of 1 is z i.e., 1 = z.

Then, cubing both sides we get, z\(^{3}\) = 1

or, z\(^{3}\) - 1 = 0

or, (z - 1)(z\(^{2}\) + z + 1) = 0

Therefore, either z - 1 = 0 i.e., z = 1 or, z\(^{2}\) + z + 1 = 0

Therefore, z = \(\frac{-1\pm \sqrt{1^{2} - 4\cdot 1\cdot 1}}{2\cdot 1}\) = \(\frac{-1\pm \sqrt{- 3}}{2}\) = -\(\frac{1}{2}\) ± i\(\frac{√3}{2}\)

Therefore, the three cube roots of unity are

1, -\(\frac{1}{2}\) + i\(\frac{√3}{2}\) and -\(\frac{1}{2}\) - i\(\frac{√3}{2}\)

among them 1 is real number and the other two are conjugate complex numbers and they are also known as imaginary cube roots of unity.

Properties of the cube roots of unity:

Property I: Among the three cube roots of unity one of the cube roots is real and the other two are conjugate complex numbers.

The three cube roots of unity are 1, -\(\frac{1}{2}\) + i\(\frac{√3}{2}\) and -\(\frac{1}{2}\) - i\(\frac{√3}{2}\).

Hence, we conclude that from the cube roots of unity we get 1 is real and the other two i.e., \(\frac{1}{2}\) + i\(\frac{√3}{2}\) and -\(\frac{1}{2}\) - i\(\frac{√3}{2}\) are conjugate complex numbers.

 

Property II: Square of any one imaginary cube root of unity is equal to the other imaginary cube root of unity.

\((\frac{-1 + \sqrt{3}i}{2})^{2}\) = \(\frac{1}{4}\)[(- 1)^2 - 2 1 √3i + (√3i)\(^{2}\)]

               = \(\frac{1}{4}\)[1 - 2√3i - 3]

               = \(\frac{-1 - \sqrt{3}i}{2}\),

And \((\frac{-1 - \sqrt{3}i}{2})^{2}\) = \(\frac{1}{4}\)[(1^2 + 2 1 √3i + (√3i)\(^{2}\)]

                    = \(\frac{1}{4}\)[1 + 2√3 i - 3]

                    = \(\frac{-1 + \sqrt{3}i}{2}\),

Hence, we conclude that square of any cube root of unity is equal to the other.

Therefore, suppose ω\(^{2}\) is one imaginary cube root of unity then the other would be ω.

 

Property III: The product of the two imaginary cube roots is 1 or, the product of three cube roots of unity is 1.

Let us assume that, ω = \(\frac{-1 - \sqrt{3}i}{2}\); then, ω\(^{2}\) = \(\frac{-1 + \sqrt{3}i}{2}\)

Therefore, the product of the two imaginary or complex cube roots = ω ω\(^{2}\) = \(\frac{-1 - \sqrt{3}i}{2}\) × \(\frac{-1 + \sqrt{3}i}{2}\)

Or, ω\(^{3}\) = \(\frac{1}{4}\)[(-1)\(^{2}\) - (√3i)\(^{2}\)] = \(\frac{1}{4}\)[1 - 3i\(^{2}\)] = \(\frac{1}{4}\)[1 + 3] = \(\frac{1}{4}\) × 4 = 1.

Again, the cube roots of unity are 1, ω, ω\(^{2}\). So, product of cube roots of unity = 1 ω ω\(^{2}\) = ω\(^{3}\) = 1.

Therefore, product of the three cube roots of unity is 1.

 

Property IV: ω\(^{3}\) = 1

We know that ω is a root of the equation z\(^{3}\) - 1 = 0. Therefore, ω satisfies the equation z\(^{3}\) - 1 = 0. 

Consequently, ω\(^{3}\) - 1 = 0

or, ω = 1.

Note: Since ω\(^{3}\) = 1, hence, ω\(^{n}\) = ω\(^{m}\), where m is the least non-negative remainder obtained by dividing n by 3.


Property V: The sum of the three cube roots of unity is zero i.e., 1 + ω + ω\(^{2}\) = 0.

We know that, the sum of the three cube roots of unity = 1 + \(\frac{-1 - \sqrt{3}i}{2}\) + \(\frac{-1 + \sqrt{3}i}{2}\)

Or, 1 + ω + ω\(^{2}\) = 1 - \(\frac{1}{2}\) + \(\frac{√3}{2}\)i - \(\frac{1}{2}\) - \(\frac{√3}{2}\)i = 0.

Notes:

(i) The cube roots of 1 are 1, ω, ω\(^{2}\) where, ω = \(\frac{-1 - \sqrt{3}i}{2}\) or, \(\frac{-1 + \sqrt{3}i}{2}\)

(ii) 1 + ω + ω\(^{2}\) = 0 ⇒ 1 + ω = - ω\(^{2}\), 1 + ω\(^{2}\) = - ω and ω + ω\(^{2}\) = -1

(iii) ω\(^{4}\) = ω\(^{3}\) ω = 1 ω = ω;

ω\(^{5}\) = ω\(^{3}\) ω\(^{2}\) = 1 ω\(^{2}\) = ω\(^{2}\);

ω\(^{6}\) = (ω\(^{3}\))\(^{2}\) = (1)\(^{2}\) = 1.

In general, if n be a positive integer then,

ω\(^{3n}\) = (ω\(^{3}\))\(^{n}\) = 1\(^{n}\) = 1;

ω\(^{3n + 1}\) = ω\(^{3n}\) ω = 1 ω = ω;

ω\(^{3n + 2}\) = ω\(^{3n}\) ω\(^{2}\) = 1 ω\(^{2}\) = ω\(^{2}\).

 

Property VI: The reciprocal of each imaginary cube roots of unity is the other.

The imaginary cube roots of unity are ω and ω\(^{2}\), where ω = \(\frac{-1 + \sqrt{3}i}{2}\).

Therefore, ω ω\(^{2}\) = ω\(^{3}\) = 1

⇒ ω = \(\frac{1}{ω^{2}}\) and ω\(^{2}\) = \(\frac{1}{ω}\)

Hence, we conclude that the reciprocal of each imaginary cube roots of unity is the other.

 

Property VII: If ω and ω\(^{2}\) are the roots of the equation z\(^{2}\) + z + 1 = 0 then - ω and - ω\(^{2}\) are the roots of the equation  z\(^{2}\) - z + 1 = 0.

Property VIII: Cube roots of -1 are -1, - ω and - ω\(^{2}\).






11 and 12 Grade Math 

From The Cube Roots of Unity to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More