The important trigonometrical ratios of submultiple angle formulae are given below:
(i) sin A = 2 sin \(\frac{A}{2}\) cos \(\frac{A}{2}\)
(ii) cos A = cos\(^{2}\) \(\frac{A}{2}\) – sin\(^{2}\) \(\frac{A}{2}\)
(iii) cos A = 2 cos\(^{2}\) \(\frac{A}{2}\) - 1
(iv) cos A = 1 - 2 sin\(^{2}\) \(\frac{A}{2}\)
(v) 1 + cos A = 2 cos\(^{2}\) \(\frac{A}{2}\)
(vi) 1 - cos A = 2 sin\(^{2}\) \(\frac{A}{2}\)
(vii) tan\(^{2}\) \(\frac{A}{2}\) = \(\frac{1 - cos A}{1 + cos A}\)
(viii) sin A = \(\frac{2 tan \frac{A}{2}}{1 + tan^{2} \frac{A}{2}}\)
(ix) cos A = \(\frac{1 - tan^{2} \frac{A}{2}}{1
+ tan^{2} \frac{A}{2}}\)
(x) tan A = \(\frac{2 tan \frac{A}{2}}{1 -
tan^{2} \frac{A}{2}}\)
(xi) sin A = 3 sin \(\frac{A}{3}\) - 4 sin\(^{3}\) \(\frac{A}{3}\)
(xii) cos A = 4 cos\(^{3}\) \(\frac{A}{3}\) - 3 cos \(\frac{A}{3}\)
(xiii) sin 15° = cos 75° = \(\frac{√3 -
1}{2√2}\)
(xiv) cos 15° = sin 75° = \(\frac{√3 + 1}{2√2}\)
(xv) tan 15° = 2 - √3.
(xvii) sin 22½˚ = \(\frac{1}{2}\sqrt{2 -
\sqrt{2}}\)
(xvii) cos 22½˚ = \(\frac{1}{2}\sqrt{2 -
\sqrt{2}}\)
(xviii) tan 22½˚= √2 - 1.
(xix) sin 18 ° = cos 72° = \(\frac{√5 - 1}{4}\)
(xx) cos 18° = sin 72° =
\(\frac{\sqrt{10 + 2\sqrt{5}}}{4}\)
(xxi) cos 36° = cos 72° = \(\frac{√5 + 1}{4}\)
(xxii) sin 36° = cos 54° = \(\frac{\sqrt{10 -
2\sqrt{5}}}{4}\)
11 and 12 Grade Math
From Submultiple Angle Formulae to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jan 15, 25 12:08 AM
Jan 14, 25 11:53 PM
Jan 14, 25 11:02 PM
Jan 14, 25 01:57 PM
Jan 14, 25 12:29 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.