Selection of Terms in an Arithmetic Progression

Sometimes we need to assume certain number of terms in Arithmetic Progression. The following ways are generally used for the selection of terms in an arithmetic progression.

(i) If the sum of three terms in Arithmetic Progression be given, assume the numbers as a - d, a and a + d. Here common difference is d.

(ii) If the sum of four terms in Arithmetic Progression be given, assume the numbers as a - 3d, a - d, a + d and a + 3d.

(iii) If the sum of five terms in Arithmetic Progression be given, assume the numbers as a - 2d, a - d, a, a + d and a + 2d. Here common difference is 2d.

(iv) If the sum of six terms in Arithmetic Progression be given, assume the numbers as a - 5d, a - 3d, a - d, a + d, a + 3d and a + 5d. Here common difference is 2d.

Note: From the above explanation we understand that in case of an odd number of terms, the middle term is ‘a’ and the common difference is ‘d’.

Again, in case of an even number of terms the middle terms are a - d, a + d and the common difference is 2d.


Solved examples to observe how to use the selection of terms in an arithmetic progression

1. The sum of three numbers in Arithmetic Progression is 12 and the sum of their square is 56. Find the numbers.

Solution:

Let us assume that the three numbers in Arithmetic Progression be a - d, a and a + d.

According to the problem,

Sum = 12                             and

⇒ a - d + a + a + d = 12

⇒ 3a = 12

⇒ a = 4

Sum of the squares = 56

(a - d)\(^{2}\) + a\(^{2}\) + (a + d)\(^{2}\) = 56

⇒ a\(^{2}\) - 2ad + d\(^{2}\) + a\(^{2}\) + a\(^{2}\) + 2ad + d\(^{2}\) = 56

⇒ 3a\(^{2}\) + 2d\(^{2}\) = 56

⇒ 3 × (4)\(^{2}\) + 2d\(^{2}\) = 56

⇒ 3 × 16 + 2d\(^{2}\) = 56

⇒ 48 + 2d\(^{2}\) = 56

⇒ 2d\(^{2}\) = 56 - 48

⇒ 2d\(^{2}\) = 8

⇒ d\(^{2}\) = 4

⇒ d = ± 2

If d = 3, the numbers are 4 – 2, 4, 4 + 2 i.e., 2, 4, 6

If d = -3, the numbers are 4 + 2, 4, 4 - 2 i.e., 6, 4, 2

Therefore, the required numbers are 2, 4, 6 or 6, 4, 2.

2. The sum of four numbers in Arithmetic Progression is 20 and the sum of their square is 120. Find the numbers.

Solution: 

Let us assume that the four numbers in Arithmetic Progression be a - 3d, a - d, a + d and a + 3d.

According to the problem,

Sum = 20

⇒ a - 3d + a - d + a + d + a + 3d = 20

⇒ 4a = 20

⇒ a = 5

and

Sum of the squares = 120

⇒ (a - 3d)\(^{2}\) + (a - d)\(^{2}\) + (a + d)\(^{2}\) + (a + 3d)\(^{2}\) = 120

⇒ a\(^{2}\) - 6ad + 9d\(^{2}\) + a\(^{2}\) - 2ad + d\(^{2}\) + a\(^{2}\) + 2ad + d\(^{2}\) + a\(^{2}\) + 6ad + 9d\(^{2}\) = 120

⇒ 4a\(^{2}\) + 20d\(^{2}\) = 120

⇒ 4 × (5)\(^{2}\) + 20d\(^{2}\) = 120

⇒ 4 × 25 + 20d\(^{2}\) = 120

⇒ 100 + 20d\(^{2}\) = 120

⇒ 20d\(^{2}\) = 120 - 100

20d\(^{2}\) = 20

⇒ d\(^{2}\) = 1

⇒ d = ± 1

If d = 1, the numbers are 5 - 3, 5 - 1, 5 + 1, 5 + 3 i.e., 2, 4, 6, 8

If d = -1, the numbers are 5 + 3, 5 + 1, 5 - 1, 5 - 3 i.e., 8, 6, 4, 2

Therefore, the required numbers are 2, 4, 6, 8 or 8, 6, 4, 2.

 

3. The sum of three numbers in Arithmetic Progression is -3 and their product is 8. Find the numbers.

Solution:

Let us assume that the three numbers in Arithmetic Progression be a - d, a and a + d.

According to the problem,

Sum = -3                                  and

⇒ a - d + a + a + d = -3

⇒ 3a = -3

⇒ a = -1

Product = 8

⇒ (a - d) (a) (a + d) = 8

⇒ (-1)[(-1)\(^{2}\) - d\(^{2}\)] = 8

⇒ -1(1 - d\(^{2}\)) = 8

⇒ -1 + d\(^{2}\) = 8

⇒ d\(^{2}\) = 8 + 1

⇒ d\(^{2}\) = 9

⇒ d = ± 3

If d = 3, the numbers are -1 - 3, -1, -1 + 3 i.e., -4, -1, 2

If d = -3, the numbers are -1 + 3, -1, -1 - 3 i.e., 2, -1, -4

Therefore, the required numbers are -4, -1, 2 or 2, -1, -4.

Arithmetic Progression





11 and 12 Grade Math 

From Selection of Terms in an Arithmetic Progression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More