Proof of Compound Angle Formula
cos\(^{2}\) α - sin\(^{2}\) β

We will learn step-by-step the proof of compound angle formula cos^2 α - sin^2 β. We need to take the help of the formula of cos (α + β) and cos (α - β) to proof the formula of cos^2 α - sin^2 β for any positive or negative values of α and β.

Prove that: cos (α + β) cos (α - β) = cos\(^{2}\) α - sin\(^{2}\) β = cos\(^{2}\) β - sin\(^{2}\) α.

Proof: cos (α + β) cos (α - β)

= (cos α cos β - sin α sin β) (cos α cos β + sin α sin β)

= (cos α cos β)\(^{2}\) - (sin α sin β)\(^{2}\)

= cos\(^{2}\) α cos\(^{2}\) β - sin\(^{2}\) α sin\(^{2}\) β

= cos\(^{2}\) α (1 - sin\(^{2}\) β) - (1 - cos\(^{2}\) α) sin\(^{2}\) β, [since we know, cos\(^{2}\) θ = 1 - sin\(^{2}\) θ]

= cos\(^{2}\) α - cos\(^{2}\) α sin\(^{2}\) β - sin\(^{2}\) β + cos\(^{2}\) α sin\(^{2}\) β

= cos\(^{2}\) α - sin\(^{2}\) β

= 1 - sin\(^{2}\) α - (1 - cos\(^{2}\) β), [since we know, cos\(^{2}\) θ = 1 - sin\(^{2}\) θ and sin\(^{2}\) θ = 1 - cos\(^{2}\) θ]

= 1 - sin\(^{2}\) α - 1 + cos\(^{2}\) β

= cos\(^{2}\) β - sin\(^{2}\) α                     Proved

Therefore, cos (α + β) cos (α - β) = cos\(^{2}\) α - sin\(^{2}\) β = cos\(^{2}\) β - sin\(^{2}\) α


Solved examples using the proof of compound angle formula cos\(^{2}\)α - sin\(^{2}\) β:

1. Prove that: cos\(^{2}\) 2x - sin\(^{2}\) x = cos x cos 3x.

Solution:

L.H.S. = cos\(^{2}\) 2x - sin\(^{2}\) x

= cos (2x + x) cos (2x - x), [since we know cos\(^{2}\) α - sin\(^{2}\) β = cos (α + β) cos (α - β)]

= cos 3x cos x = R.H.S.                         Proved

 

2. Find the value of cos\(^{2}\) (\(\frac{π}{8}\) - \(\frac{θ}{2}\)) - sin\(^{2}\) (\(\frac{π}{8}\) + \(\frac{θ}{2}\)).

Solution:

cos\(^{2}\) (\(\frac{π}{8}\) - \(\frac{θ}{2}\)) - sin\(^{2}\) (\(\frac{π}{8}\) + \(\frac{θ}{2}\))

= cos {(\(\frac{π}{8}\) - \(\frac{θ}{2}\)) + (\(\frac{π}{8}\) + \(\frac{θ}{2}\))} cos {(\(\frac{π}{8}\) - \(\frac{θ}{2}\)) - (\(\frac{π}{8}\) + \(\frac{θ}{2}\))},

[since we know, cos\(^{2}\) α - sin\(^{2}\) β = cos (α + β)

cos (α - β)]

= cos {\(\frac{π}{8}\) - \(\frac{θ}{2}\) + \(\frac{π}{8}\) + \(\frac{θ}{2}\)} cos {\(\frac{π}{8}\) - \(\frac{θ}{2}\) - \(\frac{π}{8}\) - \(\frac{θ}{2}\)}

= cos {\(\frac{π}{8}\) + \(\frac{π}{8}\)} cos {- \(\frac{θ}{2}\) - \(\frac{θ}{2}\)}

= cos \(\frac{π}{4}\) cos (- θ)

= cos \(\frac{π}{4}\) cos θ, [since we know, cos (- θ) = cos θ)

= \(\frac{1}{√2}\) ∙ cos θ [we know, cos \(\frac{π}{4}\) = \(\frac{1}{√2}\)]

 

3. Evaluate: cos\(^{2}\) (\(\frac{π}{4}\) + x) - sin\(^{2}\) (\(\frac{π}{4}\) - x)

Solution:

cos\(^{2}\) (\(\frac{π}{4}\) + x) - sin\(^{2}\) (\(\frac{π}{4}\) - x)

= cos {(\(\frac{π}{4}\) + x) + (\(\frac{π}{4}\) - x)} cos {(\(\frac{π}{4}\) + x) - (\(\frac{π}{4}\) - x)}, [since we know, cos\(^{2}\) β - sin\(^{2}\) α = cos (α + β)

cos (α - β)]

= cos {\(\frac{π}{4}\) + x + \(\frac{π}{4}\) - x} cos {\(\frac{π}{4}\) + x - \(\frac{π}{4}\) + x}

= cos {\(\frac{π}{4}\)+\(\frac{π}{4}\)} cos {x + x}

= cos \(\frac{π}{4}\) cos 2x

= 0 ∙ cos 2x, [Since we know, cos \(\frac{π}{4}\) = 0]

= 0

 Compound Angle






11 and 12 Grade Math

From Proof of Compound Angle Formula cos^2 α - sin^2 β to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Facts about Multiplication | Multiplication Sum | Answers

    Jan 15, 25 01:24 AM

    Facts about Multiplication Work
    Practice the worksheet on facts about multiplication. We know in multiplication, the number being multiplied is called the multiplicand and the number by which it is being multiplied is called the mul…

    Read More

  2. Facts about Multiplication | Multiplicand | Multiplier | Product

    Jan 15, 25 01:03 AM

    We have learnt multiplication of numbers with 2digit multiplier. Now, we will learn more. Let us know some facts about multiplication. 1. In multiplication, the number being multiplied is called the m…

    Read More

  3. Basic Multiplication Facts | Repeated Addition |Multiplication Process

    Jan 15, 25 12:23 AM

    Understanding Multiplication
    Some basic multiplication facts are needed to follow for multiplying numbers. The repeated addition of the same number is expressed by multiplication in short.

    Read More

  4. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Jan 15, 25 12:08 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More

  5. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:53 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More