Problems on Trigonometric Ratios of an Angle

We will learn how to solve different types of problems on trigonometric ratios of an angle.

1. Which of the six trigonometric function are positive for x = -10π/3?

Solution: 

Given, x = -10π/3

We know that terminal position of x + 2nπ, where n ∈ Z, is the same as that of x.

Here, -10π/3 + 2 × 2π = 2π/3, which lies in the second quadrant.

Note: This process of finding a co-terminal angle or reference number results in an angle or number α, 0 ≤ α < 2π, so that we can determine in which quadrant the given angle or number lies.

Therefore, x = -10π/3 lies in the second quadrant.

Hence, sin x and csc x are positive while the other four trigonometric functions i.e. cos x, tan x, cot x and sec x are negative.

 

2. Express cos (- 1555°) in terms of the ratio of a positive angle less than 30°.

Solution:

cos(- 1555°) = cos 1555°, since we know cos (- θ) = cos θ]

= cos (17 × 90° + 25°)

= - sin 25°; since the angle 1555° lies in the second d quadrant and cos ratio is negative in this quadrant. Again, in  the angle 1555° = 17 × 90° + 25°, multiplier of 90° is 17, which is an odd integer ; for this reason cos ratio has changed to sin.

Note: The trigonometrical ratio of an angle of any magnitude can always be expressed in terms of ratio of a positive angle less than 30°.

 

3. If θ = 170° find the sign of (sin θ + cos θ)

Solution: 

sin θ = sin 170° = sin (2 × 90° - 10°) = sin 10°

and cos θ = cos 170° = cos (1 × 90° + 80°)= - sin 80°

Therefore, sin θ + cos θ = sin 10° - sin 80°

Since sin 10° > 0, sin 80° > 0 and sin 80° > sin 10°, thus sin 10° - sin 80° < 0 (i.e. negative) so, the value of (sin θ + cos θ) is negative.

4. Find the value of cos 200° sin 160° + sin (- 340°) cos (- 380°).

Solution:

Given, cos 200° sin 160° + sin (- 340°) cos (- 380°)

= cos (2 × 90° + 20°) sin (1 × 90° + 70°) + (- sin 340°) cos 380°

= - cos 20° cos 70° - sin (3 × 90° + 70°) cos (4 × 90° + 20°)

= - cos 20° cos 700 - (- cos 70°) cos 20°

= - cos 200 cos 70° + cos 70° cos 20°

= 0

 Trigonometric Functions




11 and 12 Grade Math

From Problems on Trigonometric Ratios of an Angle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 09:48 AM

    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  2. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More

  3. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Jan 12, 25 08:41 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  4. 3rd Grade Addition Worksheet | 3-Digit Addition | Word Problems | Ans

    Jan 11, 25 01:06 PM

    3rd Grade Addition Games
    In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping…

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More