Loading [MathJax]/jax/output/HTML-CSS/jax.js

Problems on Signs of Trigonometrical Ratios

We will learn how to solve various type of problems on signs of trigonometrical ratios of any angles.

1. For what real values of x is the equation 2 cos θ = x + 1/x possible?

Solution:

Given, 2 cos θ = x + 1/x

⇒ x2 - 2 cos θ ∙ x + 1 = 0, which is a quadratic in x. As x is real, distinct ≥ 0

⇒ (- 2 cos θ)2 - 4 ∙ 1 ∙ 1 ≥ 0

⇒ cos2 θ ≥ 1 but cos^2 θ ≤ 1

⇒ cos2 θ = 1

⇒ cos θ = 1, 1

Case I: When cos θ = 1, we get,

 x2 - 2x + 1 =0

⇒ x = 1

Case II: When cos θ = -1, we get,

x2 + 2x + 1 =0

⇒ x = -1.

Hence the values of x are 1 and -1.

 

2.  Solve sin θ + √3cos θ = 1, (0 < 0 < 360°).

Solution:

sin θ + √3cos θ = 1                       

⇒ √3cos θ = 1- sin θ  

⇒  (√3cos θ)2 = (1- sin θ)2

⇒ 3cos2 θ = 1 - 2sin θ + sin2 θ

⇒ 3(1 - sin2 θ) - 1 + 2sin θ - sin2 θ = 0

⇒ 2 sin2 θ - sin θ - 1 = 0

⇒ 2 sin2 θ - 2 sin θ + sin θ - 1 = 0

⇒ (sin θ - 1)(2 sin θ +1  ) =0

Therefore, either sin θ - 1 = 0 or, 2 sin θ + 1 =0

If sin θ - 1= 0 then

sin θ = 1 = sin 90°                               

Therefore, θ = 90°

Again, 2 sin θ + 1 =0 gives, sin θ = -1/2

Now, since sin θ is negative, hence θ lies either in the third or in the fourth quadrant.

Since sin θ = -1/2 = - sin 30° = sin (180° + 30°) = sin 210°

and sin θ = - 1/2 = - sin 30° = sin (360° - 30°) = sin 330°

Therefore, θ = 210° or 330°

Therefore, the required solutions in

0 < θ < 360°are: 90°, 210° and 330°.

 

3. If the 5 sin x = 3, find the value of secxtanxsecx+tanx.

Solution:

Given 5 sin x = 3

⇒ sin x = 3/5.

Now secxtanxsecx+tanx

 = 1cosxsinxcosx1cosx+sinxcosx

= 1sinx1+sinx

= 1351+35

= 2585

= 2/8

= ¼.

4. A, B, C, D are the four angles, taken in order of a cyclic quadrilateral. Prove that, 
cot A + cot B + cot C + cot D = 0.

Solution:

We know that the opposite angles of a cyclic quadrilateral are supplementary.

Therefore, by question we have,

A + C= 180° or, C = 180° - A;

And B + D= 180° or, D = 180° - B.

Therefore, L. H. S. = cot A + cot B + cot C + cot D

= cot A + cot B + cot (180° - A) + cot (180° - B) 

= cot A + cot B - cot A - cot B

= 0. Proved.

 

5. If tan α = - 2, find the values of the remaining trigonometric function of α.

Solution:

Given tan α = - 2 which is - ve, therefore, α lies in second or fourth quadrant.

Also sec2 α = 1 + tan2 α = 1 + (-2)2 = 5

⇒ sec α = ± √5.

Two cases arise:

Case I. When α lies in the second quadrant, sec α is (-ve).

Therefore, sec α = -√5

⇒ cos α = - 1/√5

sin α = sinαcosαcosα = tan α cos α = -2 ∙ -15 = 2/√5

⇒ csc α = √5/2.

Also tan α = -2

⇒ cot α = ½.

Case II. When α lies in the fourth quadrant, sec α is + ve

Therefore, sec α = √5

⇒ cos α = 1/√5

sin α = sinαcosαcosα = tan α cos α = -2 ∙ 15 = 2/√5

 

6. If tan (α - β) = 1, sec (α + β) = 2/√3, find positive magnitudes of α and β.

Solution: 

We have, tan (α - β) = 1 = tan 45°                          

Therefore, α - β = 45° ………………. (1)

Again, sec (α + β)= 2/√3                 

⇒ cos (α + β)= √3/2 

⇒ cos (α + β) = cos 30°  or, cos (360° - 30°) = cos 330°   

Therefore, α + β = 30°  or, 330° 

Since α and β are positive and α - β = 45°, hence we must have,

α + β = 330° …………….. (2)

(1)+ (2) gives, 2a = 375°            

⇒ α = {18712

and (2) - (1) gives,

2β = 285° or, β = {14212

 Trigonometric Functions






11 and 12 Grade Math

From Problems on Signs of Trigonometrical Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Multiplication and Division of Fractions Worksheet | Ans

    Apr 10, 25 03:17 PM

    In properties of multiplication and division of fractions worksheet you will get different types of questions based on properties of multiplication of fractional numbers and properties of division of…

    Read More

  2. Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

    Apr 09, 25 01:44 AM

    In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

    Read More

  3. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Apr 08, 25 01:13 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  4. Multiplication | How to Multiply a One, Two or Three-digit Number?

    Apr 08, 25 01:08 PM

    In multiplication we know how to multiply a one, two or three-digit number by another 1 or 2-digit number. We also know how to multiply a four-digit number by a 2-digit number. We also know the differ…

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Apr 08, 25 12:43 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More