Problems on Signs of Trigonometrical Ratios

We will learn how to solve various type of problems on signs of trigonometrical ratios of any angles.

1. For what real values of x is the equation 2 cos θ = x + 1/x possible?

Solution:

Given, 2 cos θ = x + 1/x

⇒ x\(^{2}\) - 2 cos θ ∙ x + 1 = 0, which is a quadratic in x. As x is real, distinct ≥ 0

⇒ (- 2 cos θ)\(^{2}\) - 4 ∙ 1 ∙ 1 ≥ 0

⇒ cos\(^{2}\) θ ≥ 1 but cos^2 θ ≤ 1

⇒ cos\(^{2}\) θ = 1

⇒ cos θ = 1, 1

Case I: When cos θ = 1, we get,

 x\(^{2}\) - 2x + 1 =0

⇒ x = 1

Case II: When cos θ = -1, we get,

x\(^{2}\) + 2x + 1 =0

⇒ x = -1.

Hence the values of x are 1 and -1.

 

2.  Solve sin θ + √3cos θ = 1, (0 < 0 < 360°).

Solution:

sin θ + √3cos θ = 1                       

⇒ √3cos θ = 1- sin θ  

⇒  (√3cos θ)\(^{2}\) = (1- sin θ)\(^{2}\)

⇒ 3cos\(^{2}\) θ = 1 - 2sin θ + sin\(^{2}\) θ

⇒ 3(1 - sin\(^{2}\) θ) - 1 + 2sin θ - sin\(^{2}\) θ = 0

⇒ 2 sin\(^{2}\) θ - sin θ - 1 = 0

⇒ 2 sin\(^{2}\) θ - 2 sin θ + sin θ - 1 = 0

⇒ (sin θ - 1)(2 sin θ +1  ) =0

Therefore, either sin θ - 1 = 0 or, 2 sin θ + 1 =0

If sin θ - 1= 0 then

sin θ = 1 = sin 90°                               

Therefore, θ = 90°

Again, 2 sin θ + 1 =0 gives, sin θ = -1/2

Now, since sin θ is negative, hence θ lies either in the third or in the fourth quadrant.

Since sin θ = -1/2 = - sin 30° = sin (180° + 30°) = sin 210°

and sin θ = - 1/2 = - sin 30° = sin (360° - 30°) = sin 330°

Therefore, θ = 210° or 330°

Therefore, the required solutions in

0 < θ < 360°are: 90°, 210° and 330°.

 

3. If the 5 sin x = 3, find the value of \(\frac{sec x  -  tan x}{sec x  +  tan x}\).

Solution:

Given 5 sin x = 3

⇒ sin x = 3/5.

Now \(\frac{sec x - tan x}{sec x + tan x}\)

 = \(\frac{\frac{1}{cos x}  -  \frac{sin x}{cos x}}{\frac{1}{cos x} + \frac{sin x}{cos x}}\)

= \(\frac{1  -  sin x}{1  +  sin x}\)

= \(\frac{1  -  \frac{3}{5}}{1  +  \frac{3}{5}}\)

= \(\frac{\frac{2}{5}}{\frac{8}{5}}\)

= 2/8

= ¼.

4. A, B, C, D are the four angles, taken in order of a cyclic quadrilateral. Prove that, 
cot A + cot B + cot C + cot D = 0.

Solution:

We know that the opposite angles of a cyclic quadrilateral are supplementary.

Therefore, by question we have,

A + C= 180° or, C = 180° - A;

And B + D= 180° or, D = 180° - B.

Therefore, L. H. S. = cot A + cot B + cot C + cot D

= cot A + cot B + cot (180° - A) + cot (180° - B) 

= cot A + cot B - cot A - cot B

= 0. Proved.

 

5. If tan α = - 2, find the values of the remaining trigonometric function of α.

Solution:

Given tan α = - 2 which is - ve, therefore, α lies in second or fourth quadrant.

Also sec\(^{2}\) α = 1 + tan\(^{2}\) α = 1 + (-2)\(^{2}\) = 5

⇒ sec α = ± √5.

Two cases arise:

Case I. When α lies in the second quadrant, sec α is (-ve).

Therefore, sec α = -√5

⇒ cos α = - 1/√5

sin α = \(\frac{sin \alpha}{cos \alpha} \cdot cos \alpha\) = tan α cos α = -2 ∙ -\(\frac{1}{\sqrt{5}}\) = 2/√5

⇒ csc α = √5/2.

Also tan α = -2

⇒ cot α = ½.

Case II. When α lies in the fourth quadrant, sec α is + ve

Therefore, sec α = √5

⇒ cos α = 1/√5

sin α = \(\frac{sin \alpha}{cos \alpha} \cdot cos \alpha\) = tan α cos α = -2 ∙ \(\frac{1}{\sqrt{5}}\) = 2/√5

 

6. If tan (α - β) = 1, sec (α + β) = 2/√3, find positive magnitudes of α and β.

Solution: 

We have, tan (α - β) = 1 = tan 45°                          

Therefore, α - β = 45° ………………. (1)

Again, sec (α + β)= 2/√3                 

⇒ cos (α + β)= √3/2 

⇒ cos (α + β) = cos 30°  or, cos (360° - 30°) = cos 330°   

Therefore, α + β = 30°  or, 330° 

Since α and β are positive and α - β = 45°, hence we must have,

α + β = 330° …………….. (2)

(1)+ (2) gives, 2a = 375°            

⇒ α = {187\(\frac{1}{2}\)}°

and (2) - (1) gives,

2β = 285° or, β = {142\(\frac{1}{2}\)}°

 Trigonometric Functions






11 and 12 Grade Math

From Problems on Signs of Trigonometrical Ratios to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 20, 24 01:00 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  3. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  4. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 18, 24 02:23 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More