Processing math: 100%

Probability of Tossing Three Coins

Here we will learn how to find the probability of tossing three coins.

Let us take the experiment of tossing three coins simultaneously:

When we toss three coins simultaneously then the possible of outcomes are: (HHH) or (HHT) or (HTH) or (THH) or (HTT) or (THT) or (TTH) or (TTT) respectively; where H is denoted for head and T is denoted for tail.

Therefore, total numbers of outcome are 23 = 8

The above explanation will help us to solve the problems on finding the probability of tossing three coins.


Worked-out problems on probability involving tossing or throwing or flipping three coins:

1. When 3 coins are tossed randomly 250 times and it is found that three heads appeared 70 times, two heads appeared 55 times, one head appeared 75 times and no head appeared 50 times. 

If three coins are tossed simultaneously at random, find the probability of: 

(i) getting three heads,

(ii) getting two heads,

(iii) getting one head,

(iv) getting no head

Solution:

Total number of trials = 250.

Number of times three heads appeared = 70.

Number of times two heads appeared = 55.

Number of times one head appeared = 75.

Number of times no head appeared = 50.

In a random toss of 3 coins, let E1, E2, E3 and E4 be the events of getting three heads, two heads, one head and 0 head respectively. Then,

(i) getting three heads

P(getting three heads) = P(E1)

      Number of times three heads appeared
=                   Total number of trials         

= 70/250

= 0.28


(ii) getting two heads

P(getting two heads) = P(E2)

      Number of times two heads appeared
=                 Total number of trials         

= 55/250

= 0.22


(iii) getting one head

P(getting one head) = P(E3)

      Number of times one head appeared
=                 Total number of trials        

= 75/250

= 0.30


(iv) getting no head

P(getting no head) = P(E4)

      Number of times on head appeared
=                 Total number of trials      

= 50/250

= 0.20


Note:

In tossing 3 coins simultaneously, the only possible outcomes are E1, E2, E3, E4 and P(E1) + P(E2) + P(E3) + P(E4)

= (0.28 + 0.22 + 0.30 + 0.20) 

= 1

Probability of Tossing Three Coins

2. When 3 unbiased coins are tossed once.

What is the probability of:

(i) getting all heads

(ii) getting two heads

(iii) getting one head

(iv) getting at least 1 head

(v) getting at least 2 heads

(vi) getting atmost 2 heads

Solution:

In tossing three coins, the sample space is given by

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

And, therefore, n(S) = 8.

(i) getting all heads

Let E1 = event of getting all heads. Then,
E1 = {HHH}
and, therefore, n(E1) = 1.
Therefore, P(getting all heads) = P(E1) = n(E1)/n(S) = 1/8.

(ii) getting two heads

Let E2 = event of getting 2 heads. Then,
E2 = {HHT, HTH, THH}
and, therefore, n(E2) = 3.
Therefore, P(getting 2 heads) = P(E2) = n(E2)/n(S) = 3/8.

(iii) getting one head

Let E3 = event of getting 1 head. Then,
E3 = {HTT, THT, TTH} and, therefore,
n(E3) = 3.
Therefore, P(getting 1 head) = P(E3) = n(E3)/n(S) = 3/8.

(iv) getting at least 1 head

Let E4 = event of getting at least 1 head. Then,
E4 = {HTT, THT, TTH, HHT, HTH, THH, HHH}
and, therefore, n(E4) = 7.
Therefore, P(getting at least 1 head) = P(E4) = n(E4)/n(S) = 7/8.

(v) getting at least 2 heads

Let E5 = event of getting at least 2 heads. Then,
E5 = {HHT, HTH, THH, HHH}
and, therefore, n(E5) = 4.
Therefore, P(getting at least 2 heads) = P(E5) = n(E5)/n(S) = 4/8 = 1/2.

(vi) getting atmost 2 heads

Let E6 = event of getting atmost 2 heads. Then,
E6 = {HHT, HTH, HTT, THH, THT, TTH, TTT}
and, therefore, n(E6) = 7.
Therefore, P(getting atmost 2 heads) = P(E6) = n(E6)/n(S) = 7/8

3. Three coins are tossed simultaneously 250 times and the outcomes are recorded as given below.


Outcomes

3 heads

2 heads

1 head

 No head

Total

Frequencies

48

64

100

38

250


If the three coins are again tossed simultaneously at random, find the probability of getting 

(i) 1 head

(ii) 2 heads and 1 tail

(iii) All tails


Solution:

(i) Total number of trials = 250.

Number of times 1 head appears = 100.

Therefore, the probability of getting 1 head

                                                   = Frequency of Favourable TrialsTotal Number of Trials

                                                   = Number of Times 1 Head AppearsTotal Number of Trials

                                                   = 100250

                                                   = 25


(ii) Total number of trials = 250.

Number of times 2 heads and 1 tail appears = 64.

[Since, three coins are tossed. So, when there are 2 heads, there will be 1 tail also].

Therefore, the probability of getting 2 heads and 1 tail

                                         = Number of Times 2 Heads and 1 Trial appearsTotal Number of Trials

                                         = 64250

                                         = 32125


(iii) Total number of trials = 250.

Number of times all tails appear, that is, no head appears = 38.

Therefore, the probability of getting all tails

                                                   = Number of Times No Head AppearsTotal Number of Trials

                                                   = 38250

                                                   = 19125.

These examples will help us to solve different types of problems based on probability of tossing three coins.

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice






9th Grade Math

From Probability of Tossing Three Coins to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 24, 25 03:25 PM

    Subtraction of Decimals
    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Apr 24, 25 10:18 AM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  3. Division by Two-Digit Numbers | Knowledge of Estimation | Division

    Apr 24, 25 10:12 AM

    Divide 5-Digit by 2-Digit Number
    In division by two-digit numbers we will practice dividing two, three, four and five digits by two-digit numbers. Consider the following examples on division by two-digit numbers: Let us use our knowl…

    Read More

  4. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 24, 25 01:45 AM

    Addition of Decimals
    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  5. Addition of Like Fractions | Examples | Videos | Worksheet | Fractions

    Apr 23, 25 09:23 AM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More