Probability of Tossing Three Coins

Here we will learn how to find the probability of tossing three coins.

Let us take the experiment of tossing three coins simultaneously:

When we toss three coins simultaneously then the possible of outcomes are: (HHH) or (HHT) or (HTH) or (THH) or (HTT) or (THT) or (TTH) or (TTT) respectively; where H is denoted for head and T is denoted for tail.

Therefore, total numbers of outcome are 23 = 8

The above explanation will help us to solve the problems on finding the probability of tossing three coins.


Worked-out problems on probability involving tossing or throwing or flipping three coins:

1. When 3 coins are tossed randomly 250 times and it is found that three heads appeared 70 times, two heads appeared 55 times, one head appeared 75 times and no head appeared 50 times. 

If three coins are tossed simultaneously at random, find the probability of: 

(i) getting three heads,

(ii) getting two heads,

(iii) getting one head,

(iv) getting no head

Solution:

Total number of trials = 250.

Number of times three heads appeared = 70.

Number of times two heads appeared = 55.

Number of times one head appeared = 75.

Number of times no head appeared = 50.

In a random toss of 3 coins, let E1, E2, E3 and E4 be the events of getting three heads, two heads, one head and 0 head respectively. Then,

(i) getting three heads

P(getting three heads) = P(E1)

      Number of times three heads appeared
=                   Total number of trials         

= 70/250

= 0.28


(ii) getting two heads

P(getting two heads) = P(E2)

      Number of times two heads appeared
=                 Total number of trials         

= 55/250

= 0.22


(iii) getting one head

P(getting one head) = P(E3)

      Number of times one head appeared
=                 Total number of trials        

= 75/250

= 0.30


(iv) getting no head

P(getting no head) = P(E4)

      Number of times on head appeared
=                 Total number of trials      

= 50/250

= 0.20


Note:

In tossing 3 coins simultaneously, the only possible outcomes are E1, E2, E3, E4 and P(E1) + P(E2) + P(E3) + P(E4)

= (0.28 + 0.22 + 0.30 + 0.20) 

= 1

Probability of Tossing Three Coins

2. When 3 unbiased coins are tossed once.

What is the probability of:

(i) getting all heads

(ii) getting two heads

(iii) getting one head

(iv) getting at least 1 head

(v) getting at least 2 heads

(vi) getting atmost 2 heads

Solution:

In tossing three coins, the sample space is given by

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

And, therefore, n(S) = 8.

(i) getting all heads

Let E1 = event of getting all heads. Then,
E1 = {HHH}
and, therefore, n(E1) = 1.
Therefore, P(getting all heads) = P(E1) = n(E1)/n(S) = 1/8.

(ii) getting two heads

Let E2 = event of getting 2 heads. Then,
E2 = {HHT, HTH, THH}
and, therefore, n(E2) = 3.
Therefore, P(getting 2 heads) = P(E2) = n(E2)/n(S) = 3/8.

(iii) getting one head

Let E3 = event of getting 1 head. Then,
E3 = {HTT, THT, TTH} and, therefore,
n(E3) = 3.
Therefore, P(getting 1 head) = P(E3) = n(E3)/n(S) = 3/8.

(iv) getting at least 1 head

Let E4 = event of getting at least 1 head. Then,
E4 = {HTT, THT, TTH, HHT, HTH, THH, HHH}
and, therefore, n(E4) = 7.
Therefore, P(getting at least 1 head) = P(E4) = n(E4)/n(S) = 7/8.

(v) getting at least 2 heads

Let E5 = event of getting at least 2 heads. Then,
E5 = {HHT, HTH, THH, HHH}
and, therefore, n(E5) = 4.
Therefore, P(getting at least 2 heads) = P(E5) = n(E5)/n(S) = 4/8 = 1/2.

(vi) getting atmost 2 heads

Let E6 = event of getting atmost 2 heads. Then,
E6 = {HHT, HTH, HTT, THH, THT, TTH, TTT}
and, therefore, n(E6) = 7.
Therefore, P(getting atmost 2 heads) = P(E6) = n(E6)/n(S) = 7/8

3. Three coins are tossed simultaneously 250 times and the outcomes are recorded as given below.


Outcomes

3 heads

2 heads

1 head

 No head

Total

Frequencies

48

64

100

38

250


If the three coins are again tossed simultaneously at random, find the probability of getting 

(i) 1 head

(ii) 2 heads and 1 tail

(iii) All tails


Solution:

(i) Total number of trials = 250.

Number of times 1 head appears = 100.

Therefore, the probability of getting 1 head

                                                   = \(\frac{\textrm{Frequency of Favourable Trials}}{\textrm{Total Number of Trials}}\)

                                                   = \(\frac{\textrm{Number of Times 1 Head Appears}}{\textrm{Total Number of Trials}}\)

                                                   = \(\frac{100}{250}\)

                                                   = \(\frac{2}{5}\)


(ii) Total number of trials = 250.

Number of times 2 heads and 1 tail appears = 64.

[Since, three coins are tossed. So, when there are 2 heads, there will be 1 tail also].

Therefore, the probability of getting 2 heads and 1 tail

                                         = \(\frac{\textrm{Number of Times 2 Heads and 1 Trial appears}}{\textrm{Total Number of Trials}}\)

                                         = \(\frac{64}{250}\)

                                         = \(\frac{32}{125}\)


(iii) Total number of trials = 250.

Number of times all tails appear, that is, no head appears = 38.

Therefore, the probability of getting all tails

                                                   = \(\frac{\textrm{Number of Times No Head Appears}}{\textrm{Total Number of Trials}}\)

                                                   = \(\frac{38}{250}\)

                                                   = \(\frac{19}{125}\).

These examples will help us to solve different types of problems based on probability of tossing three coins.

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice






9th Grade Math

From Probability of Tossing Three Coins to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More