Position of a Point with respect to the Ellipse

We will learn how to find the position of a point with respect to the ellipse.

The point P (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) – 1 > 0, = or < 0.

Let P (x\(_{1}\), y\(_{1}\)) be any point on the plane of the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ………………….. (i)

From the point P (x\(_{1}\), y\(_{1}\)) draw PM perpendicular to XX' (i.e., x-axis) and meet the ellipse at Q.

According to the above graph we see that the point Q and P have the same abscissa. Therefore, the co-ordinates of Q are (x\(_{1}\), y\(_{2}\)).

Since the point Q (x\(_{1}\), y\(_{2}\)) lies on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1.

Therefore,

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{2}^{2}}{b^{2}}\) = 1        

\(\frac{y_{2}^{2}}{b^{2}}\) = 1 - \(\frac{x_{1}^{2}}{a^{2}}\) ………………….. (i)

Now, point P lies outside, on or inside the ellipse according as

PM >, = or < QM

i.e., according as y\(_{1}\) >, = or < y\(_{2}\)

i.e., according as \(\frac{y_{1}^{2}}{b^{2}}\) >, = or < \(\frac{y_{2}^{2}}{b^{2}}\)

i.e., according as \(\frac{y_{1}^{2}}{b^{2}}\) >, = or < 1 - \(\frac{x_{1}^{2}}{a^{2}}\), [Using (i)]

i.e., according as \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) >, = or < 1

i.e., according as \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 >, = or < 0

Therefore, the point

(i) P (x\(_{1}\), y\(_{1}\)) lies outside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 if PM > QM

i.e., \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 > 0.

(ii) P (x\(_{1}\), y\(_{1}\)) lies on the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 if PM = QM

i.e., \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 = 0.

(ii) P (x\(_{1}\), y\(_{1}\)) lies inside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 if PM < QM

i.e., \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 < 0.

Hence, the point P(x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as x\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\)  - 1 >, = or < 0.

Note:

Suppose E\(_{1}\) = \(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1, then the point P(x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as E\(_{1}\) >, = or < 0.

 

Solved examples to find the position of the point (x\(_{1}\), y\(_{1}\)) with respect to an ellipse \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1:

1. Determine the position of the point (2, - 3) with respect to the ellipse \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.  

Solution:

We know that the point (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) – 1 > , = or  < 0.

For the given problem we have,

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 = \(\frac{2^{2}}{9}\) + \(\frac{(-3)^{2}}{25}\) – 1 = \(\frac{4}{9}\) + \(\frac{9}{25}\) - 1 = - \(\frac{44}{225}\) < 0.

Therefore, the point (2, - 3) lies inside the ellipse \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{25}\) = 1.


2. Determine the position of the point (3, - 4) with respect to the ellipse \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{16}\) = 1.  

Solution:

We know that the point (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the ellipse

\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 according as

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 > , = or  < 0.

For the given problem we have,

\(\frac{x_{1}^{2}}{a^{2}}\) + \(\frac{y_{1}^{2}}{b^{2}}\) - 1 = \(\frac{3^{2}}{9}\) + \(\frac{(-4)^{2}}{16}\) - 1 = \(\frac{9}{9}\) + \(\frac{16}{16}\) - 1 = 1 + 1 - 1 = 1 > 0.

Therefore, the point (3, - 4) lies outside the ellipse \(\frac{x^{2}}{9}\) + \(\frac{y^{2}}{16}\) = 1.  

● The Ellipse






11 and 12 Grade Math 

From Position of a Point with respect to the Ellipse to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Jan 15, 25 12:08 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More

  2. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:53 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  3. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  4. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  5. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More