Position of a Point with Respect to a Circle

We will learn how to find the position of a point with respect to a circle.

A point (x\(_{1}\), y\(_{1}\)) lies outside, on or inside a circle S = x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 according as S\(_{1}\) > = or <0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

Let P (x\(_{1}\), y\(_{1}\)) be a given point, C (-g , -f) be the centre and a be the radius of the given circle.

We need to find the position of the point P (x\(_{1}\), y\(_{1}\)) with respect to the circle S = x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0.

Now, CP = \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\)

Therefore, the point

(i) P lies outside the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP > the radius of the circle.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) > \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) > g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) > g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c > 0

⇒ S\(_{1}\) > 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

 

(ii) P lies on the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP = 0.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) = \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) = g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) = g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c = 0

⇒ S\(_{1}\) = 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

 

(iii) P lies inside the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP < the radius of the circle.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) < \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) < g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) < g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c < 0

⇒ S\(_{1}\) < 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

Again, if the equation of the given circle be (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) then the coordinates of the centre C (h, k) and the radius of the circle = a

We need to find the position of the point P (x\(_{1}\), y\(_{1}\)) with respect to the circle (x - h)\(^{2}\) + (y - k)\(^{2}\)= a\(^{2}\).

Therefore, the point

(i) P lies outside the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP > the radius of the circle

i.e., CP > a

⇒ CP\(^{2}\) > a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) > a\(^{2}\)


(ii) P lies on the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP = the radius of the circle

i.e., CP = a

⇒ CP\(^{2}\) = a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) = a\(^{2}\)


(iii) P lies inside the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP < the radius of the circle

i.e., CP < a

⇒ CP\(^{2}\) < a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) < a\(^{2}\)

 

Solved examples to find the position of a point with respect to a given circle:

1. Prove that the point (1, - 1) lies within the circle x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0, whereas the point (-1, 2) is outside the circle.

Solution:

We have x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0 ⇒ S = 0, where S = x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4

For the point (1, -1), we have S\(_{1}\) = 1\(^{2}\) + (-1)\(^{2}\) - 4 ∙1 + 6 ∙ (- 1) + 4 = 1 + 1 - 4 - 6 + 4 = - 4 < 0

For the point (-1, 2), we have S\(_{1}\) = (- 1 )\(^{2}\) + 2\(^{2}\) - 4 ∙ (-1) +  6 ∙ 2 + 4 = 1 + 4 + 4 + 12 + 4 = 25 > 0

Therefore, the point (1, -1) lies inside the circle whereas (-1, 2) lies outside the circle.

 

2. Discuss the position of the points (0, 2) and (- 1, - 3) with respect to the circle x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0.

Solution:

We have x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0 ⇒ S = 0 where S = x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4

For the point (0, 2):

Putting x = 0 and y = 2 in the expression x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 we have,

S\(_{1}\) = 0\(^{2}\) + 2\(^{2}\) - 4 ∙ 0 + 6 ∙ 2 + 4 = 0 + 4 – 0 + 12 + 4 = 20, which is positive.

Therefore, the point (0, 2) lies within the given circle.

For the point (- 1, - 3):

Putting x = -1 and y = -3 in the expression x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 we have,

S\(_{1}\) = (- 1)\(^{2}\) + (- 3)\(^{2}\) - 4 ∙ (- 1) + 6 ∙ (- 3) + 4 = 1 + 9 + 4 - 18 + 4 = 18 - 18 = 0.

Therefore, the point (- 1, - 3) lies on the given circle.

 The Circle




11 and 12 Grade Math 

From Position of a Point with Respect to a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 22, 24 01:00 AM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 22, 24 12:12 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  4. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  5. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More