Position of a Point with Respect to a Circle

We will learn how to find the position of a point with respect to a circle.

A point (x\(_{1}\), y\(_{1}\)) lies outside, on or inside a circle S = x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 according as S\(_{1}\) > = or <0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

Let P (x\(_{1}\), y\(_{1}\)) be a given point, C (-g , -f) be the centre and a be the radius of the given circle.

We need to find the position of the point P (x\(_{1}\), y\(_{1}\)) with respect to the circle S = x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0.

Now, CP = \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\)

Therefore, the point

(i) P lies outside the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP > the radius of the circle.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) > \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) > g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) > g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c > 0

⇒ S\(_{1}\) > 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

 

(ii) P lies on the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP = 0.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) = \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) = g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) = g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c = 0

⇒ S\(_{1}\) = 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

 

(iii) P lies inside the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP < the radius of the circle.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) < \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) < g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) < g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c < 0

⇒ S\(_{1}\) < 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

Again, if the equation of the given circle be (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) then the coordinates of the centre C (h, k) and the radius of the circle = a

We need to find the position of the point P (x\(_{1}\), y\(_{1}\)) with respect to the circle (x - h)\(^{2}\) + (y - k)\(^{2}\)= a\(^{2}\).

Therefore, the point

(i) P lies outside the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP > the radius of the circle

i.e., CP > a

⇒ CP\(^{2}\) > a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) > a\(^{2}\)


(ii) P lies on the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP = the radius of the circle

i.e., CP = a

⇒ CP\(^{2}\) = a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) = a\(^{2}\)


(iii) P lies inside the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP < the radius of the circle

i.e., CP < a

⇒ CP\(^{2}\) < a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) < a\(^{2}\)

 

Solved examples to find the position of a point with respect to a given circle:

1. Prove that the point (1, - 1) lies within the circle x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0, whereas the point (-1, 2) is outside the circle.

Solution:

We have x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0 ⇒ S = 0, where S = x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4

For the point (1, -1), we have S\(_{1}\) = 1\(^{2}\) + (-1)\(^{2}\) - 4 ∙1 + 6 ∙ (- 1) + 4 = 1 + 1 - 4 - 6 + 4 = - 4 < 0

For the point (-1, 2), we have S\(_{1}\) = (- 1 )\(^{2}\) + 2\(^{2}\) - 4 ∙ (-1) +  6 ∙ 2 + 4 = 1 + 4 + 4 + 12 + 4 = 25 > 0

Therefore, the point (1, -1) lies inside the circle whereas (-1, 2) lies outside the circle.

 

2. Discuss the position of the points (0, 2) and (- 1, - 3) with respect to the circle x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0.

Solution:

We have x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0 ⇒ S = 0 where S = x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4

For the point (0, 2):

Putting x = 0 and y = 2 in the expression x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 we have,

S\(_{1}\) = 0\(^{2}\) + 2\(^{2}\) - 4 ∙ 0 + 6 ∙ 2 + 4 = 0 + 4 – 0 + 12 + 4 = 20, which is positive.

Therefore, the point (0, 2) lies within the given circle.

For the point (- 1, - 3):

Putting x = -1 and y = -3 in the expression x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 we have,

S\(_{1}\) = (- 1)\(^{2}\) + (- 3)\(^{2}\) - 4 ∙ (- 1) + 6 ∙ (- 3) + 4 = 1 + 9 + 4 - 18 + 4 = 18 - 18 = 0.

Therefore, the point (- 1, - 3) lies on the given circle.

 The Circle




11 and 12 Grade Math 

From Position of a Point with Respect to a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Jan 12, 25 03:23 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  2. 3rd Grade Addition Worksheet | 3-Digit Addition | Word Problems | Ans

    Jan 11, 25 01:06 PM

    3rd Grade Addition Games
    In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping…

    Read More

  3. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  4. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 11, 25 02:48 AM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  5. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More