Multiple Angle Formulae

The important trigonometrical ratios of multiple angle formulae are given below:

(i) sin 2A = 2 sin A cos  A                                               

(ii) cos 2A = cos\(^{2}\) A - sin\(^{2}\) A

(iii) cos 2A = 2 cos\(^{2}\) A - 1                                             

(iv) cos 2A = 1 - 2 sin\(^{2}\) A

(v) 1 + cos 2A = 2 cos\(^{2}\) A                                            

(vi) 1 - cos 2A = 2 sin\(^{2}\) A

(vii) tan\(^{2}\) A = \(\frac{1  -  cos  2A}{1  +  cos  2A}\)

(viii) sin 2A = \(\frac{2  tan  A}{1  +  tan^{2}  A}\)

(ix) cos 2A = \(\frac{1  -  tan^{2}  A}{1  +  tan^{2}  A}\)

(x) tan 2A = \(\frac{2  tan  A}{1  -  tan^{2}  A}\)

(xi) sin 3A = 3 sin A - 4 sin\(^{3}\) A                    

(xii) cos 3A = 4 cos\(^{3}\) A - 3 cos A

(xiii) tan 3A = \(\frac{3  tan A  -  tan^{3}  A}{1  -  3  tan^{2}  A}\)


Now we will learn how to use the above formulae for solving different types of trigonometric problems on multiple angles.

1. Prove that cos 5x = 16 cos\(^{5}\) x – 20 cos\(^{3}\) x + 5 cos x

Solution:

L.H.S. = cos 5x

= cos (2x + 3x)

= cos 2x cos 3x - sin 2x sin 3x

= (2 cos\(^{2}\) x - 1) (4 cos\(^{3}\) x - 3 cos x) - 2 sin x cos x (3 sin x - 4 sin\(^{3}\) x)

= 8 cos\(^{5}\) x - 10 cos\(^{3}\) x + 3 cos x - 6 cos x sin\(^{2}\) x + 8 cos x sin\(^{4}\) x

= 8 cos\(^{5}\) x - 10 cos\(^{3}\) x + 3 cos x - 6 cos x (1 - cos\(^{2}\) x) + 8 cos x (1 - cos\(^{2}\) x)\(^{2}\)

= 8 cos\(^{5}\) x - 10 cos\(^{3}\) x + 3 cos x - 6 cos x + 6 cos\(^{3}\) x + 8 cos x - 16 cos\(^{3}\) x + 8 cos\(^{5}\) x

= 16 cos\(^{5}\) x - 20 cos\(^{3}\) x + 5 cos x

 

2. If 13x = π, proved that cos x cos 2x cos 3x cos 4x cos 5x cos 6x = ½^6

Solution: 

L. H. S = cos x cos 2x cos 3x cos 4x cos 5x cos 6x

= \(\frac{1}{2  sin  x}\) (2 sin x cos x) cos 2x cos 3x cos 4x cos 5x  cos 6x 

= \(\frac{1}{2  sin  x}\) sin 2x cos 2x cos 3x cos 4x cos 5x cos 6x 

= \(\frac{1}{2^2  sin  x}\) (2 sin 2x cos 2x) cos 3x cos 4x cos 5x cos 6x 

= \(\frac{1}{2^3  sin  x}\) (2 sin 4x cos 4x) cos 3x cos 5x cos 6x 

= \(\frac{1}{2^3  sin  x}\) sin 8x cos 3x cos 5x cos 6x 

= \(\frac{1}{2^4  sin  x}\) (2 sin 5x cos 5x) cos 3x cos 6x,

[Since, sin 8x = sin (13x - 5x) = sin (π - 5x), (given 13x = π)

= sin 5x]

= \(\frac{1}{2^4  sin  x}\) sin 10x cos 3x cos 6x

= \(\frac{1}{2^5  sin  x}\) (2 sin 3x cos 3x) cos 6x,

[Since, sin 10x = sin (13x – 3x) = sin (π – 3x), (given 13x = π)

= sin 3x]

= \(\frac{1}{2^6  sin  x}\) 2 sin 3x cos 6x

= \(\frac{1}{2^6  sin  x}\) sin 12x

= \(\frac{1}{2^6  sin  x}\) sin (13x - x)

= \(\frac{1}{2^6  sin  x}\) sin (π - x), [Since, 13x = π]

= \(\frac{1}{2^6  sin  x}\) sin x

= \(\frac{1}{2^6}\) = R.H.S.                         Proved

 Multiple Angles






11 and 12 Grade Math

From Multiple Angle Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More