Laws of Exponents

The laws of exponents are explained here along with their examples.

1. Multiplying Powers with same Base

For example: x² × x³, 2³ × 2⁵, (-3)² × (-3)⁴

In multiplication of exponents if the bases are same then we need to add the exponents.

Consider the following: 

1. 2³ × 2² = (2 × 2 × 2) × (2 × 2) = 2\(^{3 + 2}\) = 2⁵

2. 3⁴ × 3² = (3 × 3 × 3 × 3) × (3 × 3) = 3\(^{4 + 2}\) = 3⁶

3. (-3)³ × (-3)⁴ = [(-3) × (-3) × (-3)] × [(-3) × (-3) × (-3) × (-3)]

                        = (-3)\(^{3 + 4}\) 

                        = (-3)⁷


4. m⁵ × m³ = (m × m × m × m × m) × (m × m × m)

                  = m\(^{5 + 3}\) 

                  = m⁸


From the above examples, we can generalize that during multiplication when the bases are same then the exponents are added. 

aᵐ × aⁿ = a\(^{m + n}\)

In other words, if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, then

aᵐ × aⁿ = a\(^{m + n}\)


Similarly, (\(\frac{a}{b}\))ᵐ × (\(\frac{a}{b}\))ⁿ = (\(\frac{a}{b}\))\(^{m + n}\)

\[(\frac{a}{b})^{m} \times (\frac{a}{b})^{n} = (\frac{a}{b})^{m + n}\]


Note: 

(i) Exponents can be added only when the bases are same. 

(ii) Exponents cannot be added if the bases are not same like

m⁵ × n⁷, 2³ × 3⁴

Multiplying Powers with same Base, Laws of Exponents

For example:

1. 5³ ×5⁶

= (5 × 5 × 5) × (5 × 5 × 5 × 5 × 5 × 5)

= 5\(^{3 + 6}\), [here the exponents are added] 

= 5⁹


2. (-7)\(^{10}\) × (-7)¹²

= [(-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)] × [( -7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)].

= (-7)\(^{10 + 12}\), [Exponents are added] 

= (-7)²²


3. \((\frac{1}{2})^{4}\) × \((\frac{1}{2})^{3}\)

=[(\(\frac{1}{2}\)) × (\(\frac{1}{2}\)) × (\(\frac{1}{2}\)) × (\(\frac{1}{2}\))] × [(\(\frac{1}{2}\)) × (\(\frac{1}{2}\)) × (\(\frac{1}{2}\))] 


=(\(\frac{1}{2}\))\(^{4 + 3}\)

=(\(\frac{1}{2}\))⁷


4. 3² × 3⁵

= 3\(^{2 + 5}\)

= 3⁷


5. (-2)⁷ × (-2)³

= (-2)\(^{7 + 3}\)

= (-2)\(^{10}\)



6. (\(\frac{4}{9}\))³ × (\(\frac{4}{9}\))²

= (\(\frac{4}{9}\))\(^{3 + 2}\)

= (\(\frac{4}{9}\))⁵


We observe that the two numbers with the same base are

multiplied; the product is obtained by adding the exponent.


2. Dividing Powers with the same Base

For example: 

3⁵ ÷ 3¹, 2² ÷ 2¹, 5(²) ÷ 5³

In division if the bases are same then we need to subtract the exponents. 

Consider the following: 

2⁷ ÷ 2⁴ = \(\frac{2^{7}}{2^{4}}\)

            = \(\frac{2 × 2 × 2 × 2 × 2 × 2 × 2}{2 × 2 × 2 × 2}\)

            = 2\(^{7 - 4}\)

            = 2³

5⁶ ÷ 5² = \(\frac{5^{6}}{5^{2}}\)

            = = \(\frac{5 × 5 × 5 × 5 × 5 × 5}{5 × 5}\)

            = 5\(^{6 - 2}\) 

            = 5⁴


10⁵ ÷ 10³ = \(\frac{10^{5}}{10^{3}}\)

                = \(\frac{10 × 10 × 10 × 10 × 10}{10 × 10 × 10}\)

                = 10\(^{5 - 3}\)

                = 10²


7⁴ ÷ 7⁵ = \(\frac{7^{4}}{7^{5}}\)

            = \(\frac{7 × 7 × 7 × 7}{7 × 7 × 7 × 7 × 7}\)

            = 7\(^{4 - 5}\) 

            = 7\(^{-1}\)


Let a be a non zero number, then

a⁵ ÷ a³ = \(\frac{a^{5}}{a^{3}}\)

            = \(\frac{a × a × a × a × a}{a × a × a}\)

            = a\(^{5 - 3}\) 

            = a²


again, a³ ÷ a⁵ = \(\frac{a^{3}}{a^{5}}\)

                     = \(\frac{a × a × a}{a × a × a × a × a}\)

                     = a\(^{-(5 - 3)}\)

                     = a\(^{-2}\)

Thus, in general, for any non-zero integer a, 

aᵐ ÷ aⁿ = \(\frac{a^{m}}{a^{n}}\) = a\(^{m - n}\)


Note 1: 

Where m and n are whole numbers and m > n; 

aᵐ ÷ aⁿ = \(\frac{a^{m}}{a^{n}}\) = a\(^{-(n - m)}\)


Note 2: 

Where m and n are whole numbers and m < n; 

We can generalize that if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, such that m > n, then 

aᵐ ÷ aⁿ = a\(^{m - n}\) if m < n, then aᵐ ÷ aⁿ = \(\frac{1}{a^{n - m}}\)

Similarly, \((\frac{a}{b})^{m}\) ÷ \((\frac{a}{b})^{n}\) = \(\frac{a}{b}\) \(^{m - n}\)

Dividing Powers with the same Base, Laws of Exponents

For example:

1. 7\(^{10}\) ÷ 7⁸ = \(\frac{7^{10}}{7^{8}}\)

                             = \(\frac{7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7}{7 × 7 × 7 × 7 × 7 × 7 × 7 × 7}\)

                             = 7\(^{10 - 8}\), [here exponents are subtracted] 

                             = 7²


2. p⁶ ÷ p¹ = \(\frac{p^{6}}{p^{1}}\)

               = \(\frac{p × p × p × p × p × p}{p}\)

               = p\(^{6 - 1}\), [here exponents are subtracted] 

               = p⁵


3. 4⁴ ÷ 4² = \(\frac{4^{4}}{4^{2}}\)

                = \(\frac{4 × 4 × 4 × 4}{4 × 4}\)

                = 4\(^{4 - 2}\), [here exponents are subtracted] 

                = 4²


4. 10² ÷ 10⁴ = \(\frac{10^{2}}{10^{4}}\)

                   = \(\frac{10 × 10}{10 × 10 × 10 × 10}\)

                   = 10\(^{-(4 - 2)}\), [See note (2)] 

                   = 10\(^{-2}\)


5. 5³ ÷ 5¹

= 5\(^{3 - 1}\)

= 5²



6. \(\frac{(3)^{5}}{(3)^{2}}\)

= 3\(^{5 - 2}\)

= 3³


7. \(\frac{(-5)^{9}}{(-5)^{6}}\)

= (-5)\(^{9 - 6}\)

= (-5)³


8. (\(\frac{7}{2}\))⁸ ÷ (\(\frac{7}{2}\))⁵

= (\(\frac{7}{2}\))\(^{8 - 5}\)

= (\(\frac{7}{2}\))³


Laws of Exponents or Indices

3. Power of a Power

For example: (2³)², (5²)⁶, (3² )\(^{-3}\)

In power of a power you need multiply the powers.

Consider the following

(i) (2³)⁴

Now, (2³)⁴ means 2³ is multiplied four times

i.e. (2³)⁴ = 2³ × 2³ × 2³ × 2³

=2\(^{3 + 3 + 3 + 3}\)

=2¹²

Note: by law (l), since aᵐ × aⁿ = a\(^{m + n}\).



(ii) (2³)²

Similarly, now (2³)² means 2³ is multiplied two times

i.e. (2³)² = 2³ × 2³

= 2\(^{3 + 3}\), [since aᵐ × aⁿ = a\(^{m + n}\)] 

= 2⁶

Note: Here, we see that 6 is the product of 3 and 2 i.e,

                         (2³)² = 2\(^{3 × 2}\)= 2⁶



(iii) (4\(^{- 2}\))³


Similarly, now (4\(^{-2}\))³ means 4\(^{-2}\)

 is multiplied three times


i.e. (4\(^{-2}\))³ =4\(^{-2}\) × 4\(^{-2}\) × 4\(^{-2}\)

= 4\(^{-2 + (-2) + (-2)}\)

= 4\(^{-2 - 2 - 2}\)

= 4\(^{-6}\)

Note: Here, we see that -6 is the product of -2 and 3 i.e,

                (4\(^{-2}\))³ = 4\(^{-2 × 3}\) = 4\(^{-6}\)


For example:

1.(3²)⁴ = 3\(^{2 × 4}\) = 3⁸

2. (5³)⁶ = 5\(^{3 × 6}\) = 5¹⁸

3. (4³)⁸ = 4\(^{3 × 8}\) = 4²⁴

4. (aᵐ)⁴ = a\(^{m × 4}\) = a⁴ᵐ

5. (2³)⁶ = 2\(^{3 × 6}\) = 2¹⁸

6. (xᵐ)\(^{-n}\) = x\(^{m × -(n)}\) = x\(^{-mn}\)

7. (5²)⁷ = 5\(^{2 × 7}\) = 5¹⁴

8. [(-3)⁴]² = (-3)\(^{4 × 2}\) = (-3)⁸


In general, for any non-integer a, (aᵐ)ⁿ= a\(^{m × n}\) = a\(^{mn}\)

Thus where m and n are whole numbers. 


If ‘a’ is a non-zero rational number and m and n are positive integers, then {(\(\frac{a}{b}\))ᵐ}ⁿ = (\(\frac{a}{b}\))\(^{mn}\)

Power of a Power, Laws of Exponents

For example:

[(\(\frac{-2}{5}\))³]²

= (\(\frac{-2}{5}\))\(^{3 × 2}\)

= (\(\frac{-2}{5}\))⁶


4. Multiplying Powers with the same Exponents

For example: 3² × 2², 5³ × 7³

We consider the product of 4² and 3², which have different bases, but the same exponents. 

(i) 4² × 3² [here the powers are same and the bases are different] 

= (4 × 4) × (3 × 3) 

= (4 × 3) × (4 × 3) 

= 12 × 12

= 12²

Here, we observe that in 12², the base is the product of bases 4 and 3. 

Multiplying Powers with the same Exponents, Exponent Rules

We consider, 

(ii) 4³ × 2³

= (4 × 4 × 4) × (2 × 2 × 2)

= (4 × 2)× ( 4 × 2) × (4 × 2)

= 8 × 8 × 8

= 8³



(iii) We also have, 2³ × a³

= (2 × 2 × 2) × (a × a × a)

= (2 × a) × (2 × a) × (2 × a)

= (2 × a)³

= (2a)³ [Here 2 × a = 2a]



(iv) Similarly, we have, a³ × b³

= (a × a × a) × (b × b × b)

= (a × b) × (a × b) × (a × b)

= (a × b)³

= (ab)³ [Here a × b = ab]

Note: In general, for any non-zero integer a, b.

aᵐ × bᵐ

= (a × b)ᵐ

= (ab)ᵐ [Here a × b = ab]


aᵐ × bᵐ = (ab)ᵐ


Note: Where m is any whole number.

(-a)³ × (-b)³

= [(-a) × (-a) × (-a)] × [(-b) × (-b) × (-b)]

= [(-a) × (-b)] × [(-a) × (-b)] × [(-a) × (-b)]

= [(-a) × (-b)]³

= (ab)³, [Here a × b = ab and two negative become positive, (-) × (-) = +]



5. Negative Exponents

If the exponent is negative we need to change it into positive exponent by writing the same in the denominator and 1 in the numerator.

If ‘a’ is a non-zero integer or a non-zero rational number and m is a positive integers, then a\(^{-m}\) is the reciprocal of aᵐ, i.e., 


a\(^{-m}\) = \(\frac{1}{a^{m}}\), if we take ‘a’ as \(\frac{p}{q}\) then (\(\frac{p}{q}\))\(^{-m}\) = \(\frac{1}{(\frac{p}{q})^{m}}\) = (\(\frac{q}{p}\))ᵐ


again, \(\frac{1}{a^{-m}}\) = aᵐ


Similarly, (\(\frac{a}{b}\))\(^{-n}\) = (\(\frac{b}{a}\))ⁿ, where n is a positive integer


Consider the following

2\(^{-1}\) = \(\frac{1}{2}\)

2\(^{-2}\) = \(\frac{1}{2^{2}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) = \(\frac{1}{4}\)

2\(^{-3}\) = \(\frac{1}{2^{3}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) = \(\frac{1}{8}\)

2\(^{-4}\) = \(\frac{1}{2^{4}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\)  = \(\frac{1}{16}\)

2\(^{-5}\) = \(\frac{1}{2^{5}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) = \(\frac{1}{32}\)


[So in negative exponent we need to write 1 in the numerator and in the denominator 2 multiplied to itself five times as 2\(^{-5}\). In other words negative exponent is the reciprocal of positive exponent] 

Negative Exponents, Laws of Exponents

For example:

1. 10\(^{-3}\)

= \(\frac{1}{10^{3}}\), [here we can see that 1 is in the numerator and in the denominator 10³ as we know that negative exponent is the reciprocal] 

= \(\frac{1}{10}\) × \(\frac{1}{10}\) × \(\frac{1}{10}\), [Here 10 is multiplied to itself 3 times] 

= \(\frac{1}{1000}\)



2. (-2)\(^{-4}\)

= \(\frac{1}{(-2)^{4}}\) [Here we can see that 1 is in the numerator and in the denominator (-2)⁴] 

= (- \(\frac{1}{2}\)) × (- \(\frac{1}{2}\)) × (- \(\frac{1}{2}\)) × (- \(\frac{1}{2}\)) 

= \(\frac{1}{16}\)


3. 2\(^{-5}\)

= \(\frac{1}{2^{5}}\)

= \(\frac{1}{2}\) × \(\frac{1}{2}\)

= \(\frac{1}{4}\)



4. \(\frac{1}{3^{-4}}\)

= 3⁴

= 3 × 3 × 3 × 3

= 81


5. (-7)\(^{-3}\)

= \(\frac{1}{(-7)^{3}}\)



6. (\(\frac{3}{5}\))\(^{-3}\)

= (\(\frac{5}{3}\))³



7. (-\(\frac{7}{2}\))\(^{-2}\)

= (-\(\frac{2}{7}\))²


6. Power with Exponent Zero

If the exponent is 0 then you get the result 1 whatever the base is. 

For example: 8\(^{0}\), (\(\frac{a}{b}\))\(^{0}\), m\(^{0}\)…....


If ‘a’ is a non-zero integer or a non-zero rational number then, 

a\(^{0}\) = 1


Similarly, (\(\frac{a}{b}\))\(^{0}\) = 1


Consider the following

a\(^{0}\) = 1 [anything to the power 0 is 1] 

(\(\frac{a}{b}\))\(^{0}\) = 1

(\(\frac{-2}{3}\))\(^{0}\) = 1

(-3)\(^{0}\) = 1

Power with Exponent Zero, Laws of Exponents

For example:

1. (\(\frac{2}{3}\))³ × (\(\frac{2}{3}\))\(^{-3}\)

= (\(\frac{2}{3}\))\(^{3 + (-3)}\), [Here we know that aᵐ × aⁿ = a\(^{m + n}\)] 

= (\(\frac{2}{3}\))\(^{3 - 3}\)

= (\(\frac{2}{3}\))\(^{0}\)

= 1



2. 2⁵ ÷ 2⁵

\(\frac{2^{5}}{2^{5}}\)

= \(\frac{2 × 2 × 2 × 2 × 2}{2 × 2 × 2 × 2 × 2}\)

= 2\(^{5 - 5}\), [Here by the law aᵐ ÷ aⁿ =a\(^{m - n}\)] 

= 2

= 1




3. 4\(^{0}\) × 3\(^{0}\)

= 1 × 1, [Here as we know anything to the power 0 is 1]

= 1


4. aᵐ × a\(^{-m}\)

= a\(^{m - m}\)

= a\(^{0}\)

= 1


5. 5\(^{0}\) = 1

6. (\(\frac{-4}{9}\))\(^{0}\) = 1

7. (-41)\(^{0}\) = 1

8. (\(\frac{3}{7}\))\(^{0}\) = 1



7. Fractional Exponent

In fractional exponent we observe that the exponent is in fraction form.

a\(^{\frac{1}{n}}\), [Here a is called the base and \(\frac{1}{n}\) is called the exponent or power]

= \(\sqrt[n]{a}\), [nth root of a] 

\[a^{\frac{1}{n}} = \sqrt[n]{a}\]



Consider the following:

2\(^{\frac{1}{1}}\) = 2 (it will remain 2). 

2\(^{\frac{1}{2}}\) = √2 (square root of 2).

2\(^{\frac{1}{3}}\) = ∛2 (cube root of 2).

2\(^{\frac{1}{4}}\) = ∜2 (fourth root of 2).

2\(^{\frac{1}{5}}\) = \(\sqrt[5]{2}\) (fifth root of 2). 

Fractional Exponent, Laws of Exponents

For example:

1. 2\(^{\frac{1}{2}}\) = √2 (square root of 2). 

2. 3\(^{\frac{1}{2}}\) = √3 [square root of 3] 

3. 5\(^{\frac{1}{3}}\) = ∛5 [cube root of 5]

4. 10\(^{\frac{1}{3}}\) = ∛10 [cube root of 10]

5. 21\(^{\frac{1}{7}}\) = \(\sqrt[7]{21}\) [Seventh root of 21]


 Exponents

Exponents

Laws of Exponents

Rational Exponent

Integral Exponents of a Rational Numbers

Solved Examples on Exponents

Practice Test on Exponents


 Exponents - Worksheets

Worksheet on Exponents












8th Grade Math Practice

From Laws of Exponents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of 10, 100 and 1000 | Adding 10 | Adding 100 | Adding 1000

    Jan 10, 25 01:20 AM

    Adding 10
    Here we will learn Addition of 10, 100 and 1000 with the help of different examples.

    Read More

  2. Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

    Jan 10, 25 12:10 AM

    Estimating the Sum
    We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

    Read More

  3. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 09, 25 10:50 PM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  4. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 09, 25 10:07 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  5. Adding 4-digit Numbers without Regrouping | 4-digit Addition |Addition

    Jan 07, 25 11:45 AM

    Adding 4-digit Numbers without Regrouping
    We will learn adding 4-digit numbers without regrouping. We first arrange the numbers one below the other in place value columns and then add the digits under each column as shown in the following exa…

    Read More