The Law of Sines

We will discuss here about the law of sines or the sine rule which is required for solving the problems on triangle.

In any triangle the sides of a triangle are proportional to the sines of the angles opposite to them.

That is in any triangle ABC,                     

                                            \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

Proof:

Let ABC be a triangle.


Now will derive the three different cases:

Case I: Acute angled triangle (three angles are acute): The triangle ABC is acute-angled.

The Law of Sines

Now, draw AD from A which is perpendicular to BC. Clearly, D lies on BC

Now from the triangle ABD, we have,

sin B = AD/AB

⇒ sin B = AD/c, [Since, AB = c]

⇒ AD= c sin B ……………………………………. (1)

Again from the triangle ACD we have,

sin C = AD/AC

⇒ sin C = AD/b, [Since, AC = b]

⇒ AD = b sin C ...………………………………….. (2)

Now, from (1) and (2) we get,

c sin B = b sin C

⇒ b/sin B = c/sin c………………………………….(3)

Similarly, if we draw a perpendicular to AC from B, we will get

a/sin A = c/sin c………………………………….(4)

Therefore, from (3) and (4) we get,

\(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

 

Case II: Obtuse angled triangle (one angle is obtuse): The triangle ABC is obtuse angled.

The Sine Rule

Now, draw AD from A which is perpendicular to produced BC. Clearly, D lies on produced BC.

Now from the triangle ABD, we have,

sin ∠ABD = AD/AB

⇒ sin (180 - B) = AD/c, [Since ∠ABD = 180 - B and AB = c]

⇒ sin B = AD/c, [Since sin (180 - θ) = sin θ]

⇒ AD = c sin B ……………………………………. (5)

Again, from the triangle ACD, we have,

sin C = AD/AC

⇒ sin C = AD/b, [Since, AC = b]

⇒ AD = b sin C ……………………………………. (6)

Now, from (5) and (6) we get,

c sin B = b sin C

b/sin B = c/sin C ……………………………………. (7)

Similarly, if we draw a perpendicular to AC from B, we will get

a/sin A = b/sin B ……………………………………. (8)

Therefore, from (7) and (8) we get,

\(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

Case III: Right angled triangle (one angle is right angle): The triangle ABC is right angled. The angle C is a right angle.

Sine Rule

Now from triangle ABC, we have,

sin C = sin π/2

⇒ sin C = 1, [Since, sin π/2 = 1], ……………………………………. (9)

sin A = BC/AB

⇒ sin A = a/c, [Since, BC = a and AB = c]

⇒ c = a/sin A ……………………………………. (10)

and sin B = AC/AB

⇒ sin B = b/c, [Since, AC = b and AB = c]

⇒ c = b/sin B ……………………………………. (11)

Now from (10) and (11) we get,

a/sin A = b/sin B = c

⇒ a/sin A = b/sin B = c/1

Now from (9) we get,

⇒ \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\)

Therefore, from all three cases, we get,

\(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\).                                Proved.

 

Note:

1. The sine rule or the law of sines can be expressed as

\(\frac{sin A}{a}\) = \(\frac{sin B}{b}\) = \(\frac{sin C}{c}\)

2. The sine rule or the law of sines is a very useful rule to express sides of a triangle in terms of the sines of angles and vice-versa in the following manner.

We have \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\) = \(\frac{c}{sin C}\) = k\(_{1}\) (say)

⇒ a = k\(_{1}\)  sin A, b = k\(_{1}\)  sin B and c = k\(_{1}\)  sin C

Similarly, sin A/a = sin B/b = sin C/c = k\(_{2}\) (say)

⇒ sin A = k\(_{2}\) a, sin B = k\(_{2}\) b and sin C = k\(_{2}\) c


Solved problem using the law of sines:

The triangle ABC is isosceles; if ∠A = 108°, find the value of a : b.

Solution:

Since the triangle ABC is isosceles and A = 108°, A + B + C = 180°, hence it is evident that B = C.

Now, B + C = 180° - A = 180° - 108°

⇒ 2B = 72° [Since, C = B]

⇒ B = 36°

Again, we have, \(\frac{a}{sin A}\) = \(\frac{b}{sin B}\)

Therefore, \(\frac{a}{b}\) = \(\frac{sin A}{sin B}\) = \(\frac{sin 108°}{sin 36°}\) = \(\frac{cos 18°}{sin 36°}\)

Now, cos 18° = \(\sqrt{1 - sin^{2} 18°}\)

                   = \(\sqrt{1 - (\frac{\sqrt{5} - 1}{4})^{2}}\)

                   = ¼\(\sqrt{10 + 2\sqrt{5}}\)

and sin 36° = \(\sqrt{1 - cos^{2} 36°}\)

                 = \(\sqrt{1 - (\frac{\sqrt{5} + 1}{4})^{2}}\)

                 = ¼\(\sqrt{10 - 2\sqrt{5}}\)

Therefore, a/b = \(\frac{\frac{1}{4}\sqrt{10 + 2\sqrt{5}}}{\frac{1}{4}\sqrt{10 - 2\sqrt{5}}}\)

                    = \(\frac{\sqrt{10 + 2\sqrt{5}}}{\sqrt{10 - 2\sqrt{5}}}\)
                  

                    = \(\sqrt{\frac{(10 + 2\sqrt{5})^{2}}{10^{2} - (2\sqrt{5})^{2}}}\)

                    = \(\frac{10 + 2\sqrt{5}}{\sqrt{80}}\)

           ⇒ \(\frac{a}{b}\) = \(\frac{2√5(√5 + 1)}{4 √5}\)

           \(\frac{a}{b}\) = \(\frac{√5 + 1}{2}\)

Therefore, a : b = (√5 + 1) : 2

 Properties of Triangles



11 and 12 Grade Math

From The Law of Sines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More