Important Properties of Transverse Common Tangents

I. The two transverse common tangents drawn to two circles are equal in length.

Given:

WX and YZ are two transverse common tangents drawn to the two given circles with centres O and P. WX and YZ intersect at T.

Equal Transverse Common Tangents

To prove: WX = YZ.

Proof:

Statement

Reason

1. WT = YT.

1. The two tangents, drawn to a circle from an external point, are equal in length.

2. XT = ZT.

2. An in statement 1.

3. WT + XT = YT + ZT

⟹ WX = YZ. (Proved)

3. Adding statements 1 and 2.

Length of a Transverse Common Tangent


II. The length of a transverse common tangent to two circles is \(\sqrt{d^{2} – (r_{1} + r_{2})^{2}}\), where d is the distance between the centres of the circles, and r\(_{1}\) and r\(_{2}\) are the radii of the given circles.

Proof:

Let two circles be given with centres O and P, and radii r\(_{1}\) and r\(_{2}\) respectively, where r\(_{1}\) < r\(_{2}\). Let the distance between the centres of the circles, OP = d.

Let WX be a transverse common tangent.

Therefore, OW = r\(_{1}\) and PX = r\(_{2}\).

Also, OW ⊥ WX and PX ⊥ WX, because a tangent is perpendicular to the radius drawn through the point of contact

Produce W to T such that WT = PX = r\(_{2}\). Join T to P. In the quadrilateral WXPT, WT ∥ PX, as both are perpendiculars to WX; and WT = PX. Therefore, WXPT is a rectangle. Thus, WX = PT, as the opposite sides of a rectangle are equal.

OT = OW + WT = r\(_{1}\)  +  r\(_{2}\).

In the right-angled triangle OPT, we have

PT2 = OP2 – OT2 (by Pythagoras’ Theorem)

⟹ PT2 = d2 – (r\(_{1}\) + r\(_{1}\))\(^{2}\)

⟹ PT = \(\sqrt{d^{2} – (r_{1} + r_{2})^{2}}\)

⟹ WX = \(\sqrt{d^{2} – (r_{1} + r_{2})^{2}}\) (Since, PT = WX).


III. The transverse common tangents drawn to two circles intersect on the line drawn through the centres of the circles.

Given: Two circles with centres O and P, and their transverse common tangents WX and YZ, which intersects at T

Properties of Transverse Common Tangents

To prove: T lies on the line joining O to P, i.e., O T and P lie on the same straight line.

Proof:

Statement

Reason

1. OT bisects ∠WTY

⟹ ∠ATO = \(\frac{1}{2}\)∠WTY.

1. The tangents drawn to a circle from an external point are equally inclined to the line joining the point to the centre of the circle.

2. TP bisects ∠ZTX

⟹ ∠XTP = \(\frac{1}{2}\)∠ZTX.

2.  As in statement 1.

3. ∠WTY = ∠ZTX.

3. Vertically opposite angles.

4. ∠WTO = ∠XTP.

4. From statement 1, 2 and 3.

5. OT and TP lie on the same straight line

⟹ O, T, P are collinear. (Prove)

5. The two angles are forming a pair of vertically opposite angles.




10th Grade Math

From Important Properties of Transverse Common Tangents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More