Empirical Probability

Definition of Empirical Probability:

The experimental probability of occurring of an event is the ratio of the number of trials in which the event occurred to the total number of trials.

The empirical probability of the occurrence of an event E is defined as:

                          Number of trials in which event occurred
            P(E) =                       Total number of trials                  

If in a random experiment, n  trials are carried out and the favourable outcome for the event appears f times, the ratio \(\frac{\textit{f}}{n}\) approaches a particular value p and n becomes very large. This number p is known as the empirical probability


Let a coin be tossed several times. The number of times the head appears for every 20 trials is listed cumulatively in the following table:


No. of trials (n)

20

40

60

80

100

...

Total number of heads (f)

13

24

35

44

51

...

\[\frac{\textbf{f}}{\textbf{n}}\]


0.65

0.60

0.58

0.55

0.51

...


Thus we see that as we go on increasing the number of trials, the value of the fraction \(\frac{\textbf{f}}{\textbf{n}}\), known as relative frequency, approaches the value 0.5, i.e., \(\frac{1}{2}\). Similarly, on several throws of a die, we find that the relative frequency of the appearance of a particular score approaches the fraction \(\frac{1}{6}\) as the number of trials increases.

Thus, from the above experimental results, empirical probability may be defined as follows:

Probability of an event E, symbolically P(E)

                                                  = \(\frac{\textrm{Frequency of the Occurrence of the Event E}}{\textrm{Sum of all the Frequencies}}\)


Note: Probability may also be found by using the following formulae:

(i) P(E) = \(\frac{\textrm{The Number of Trials in which Event E Occurs}}{\textrm{Total Number of Trials}}\)

(ii) P(E) = \(\frac{\textrm{The Number of Outcomes in Favour of the Event E}}{\textrm{Total Number of Outcomes}}\)


Now we will solve the examples on different types of experiments and their outcomes such as tossing a coin, throwing of a die etc.,


Solved Problems on Empirical Probability:

1. Three coins were tossed simultaneously 200 times and the frequencies of the different outcomes were as given in the table below:

Empirical Probability

If the three coins are again tossed simultaneously, find the probability of getting two heads.

Solution: 

Let E be the event of getting two heads.

Therefore, P(E) = \(\frac{\textrm{Frequency of getting Two Heads}}{\textrm{Sum of all the Frequencies}}\)

                    = \(\frac{72}{200}\)

                    = \(\frac{9}{25}\).


2. Let us take the experiment of tossing a coin.

When we toss a coin then we know that the results are either a head or a tail. 

Thus, in tossing a coin, all possible outcomes are ‘Head’ and ‘Tail’.

Suppose, we toss a coin 150 times and we get head, say, 102 times.

Here we will find the probability of getting:

(i) a head and,

(ii) a tail


(i) Probability of getting a head:

Let E1 be the event of getting a head.

Then, P(getting a head)

           Number of times getting heads
= P(E1) =      Total number of trials        

= 102/150

= 0.68


(ii) Probability of getting a tail:

Total number of times a coin is tossed = 150

Number of times we get head = 102

Therefore, number of times we get tail = 150 – 102 = 48

Now, let E2 be the event of getting a tail.

Then, P(getting a tail)

           Number of times getting tails
= P(E2) =      Total number of trials        


= 48/150

= 0.32

Note: Remember, when a coin is tossed, then E1 and E2 are the only possible outcomes, and P(E1) + P(E2) = (0.68 + 0.32) = 1

3. Consider an experiment of rolling a die.

When we roll a die then the upper face of the die are marked as 1, 2, 3, 4, 5 or 6. These are the only six possible outcomes.
Suppose we throw a die 180 times and suppose we get 5 for 72 times.

Let E = event of getting 5 (dots).

Then, clearly, P(E) = 72/180= 0.40


4. Let us take the case of tossing two coins simultaneously.

When we toss two coins simultaneously then the possible of outcomes are: (two heads) or (one head and one tail) or (two tails) i.e., in short (H,H) or (H,T) or (T,T) respectively.

Let us toss two coins randomly for 100 times.

Suppose the outcomes are:

Two heads: 35 times

One head: 30 times

0 head: 35 times

Let E1 be the event of getting 2 heads.

Then, P(E1) = 35/100 = 0.35

Let E2 be the event of getting 1 head.

Then, P(E2) = 30/100 =0.30

Let E3 be the event of getting 0 head.

Then, P(E3) = 35/100 = 0.35.

Note: Remember, when two coins are tossed randomly, then E1, E2 and E3 are the only possible outcomes, and P(E1) + P(E2) + P(E3)

= (0.35 + 0.30 + 0.35)

= 1

Probability

Probability

Random Experiments

Experimental Probability

Events in Probability

Empirical Probability

Coin Toss Probability

Probability of Tossing Two Coins

Probability of Tossing Three Coins

Complimentary Events

Mutually Exclusive Events

Mutually Non-Exclusive Events

Conditional Probability

Theoretical Probability

Odds and Probability

Playing Cards Probability

Probability and Playing Cards

Probability for Rolling Two Dice

Solved Probability Problems

Probability for Rolling Three Dice









9th Grade Math

From Empirical Probability to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Jan 12, 25 03:23 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  2. 3rd Grade Addition Worksheet | 3-Digit Addition | Word Problems | Ans

    Jan 11, 25 01:06 PM

    3rd Grade Addition Games
    In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping…

    Read More

  3. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  4. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 11, 25 02:48 AM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  5. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More