Division of Monomials

Division of monomials means product of their quotient of numerical coefficients and quotient of their literal coefficients.


Since, the product of 3m and 5n = 3m × 5n = 15mn; it follows that

(i) \(\frac{15mn}{3m} = \frac{3   \times   5   \times   m   \times   n}{3   \times   m}\) = 5n

or, 15mn ÷ 3m = 5n

i.e. when 15mn is divided by 3m, the quotient is 5n.

(ii) \(\frac{15mn}{5n} = \frac{3   \times   5   \times   m   \times   n}{5   \times   n}\) = 3m

or, 15mn ÷ 5n = 3m

i.e. when 15mn is divided by 5n, the quotient is 3m.

1. Divide 35mxy by 5my

35mxy ÷ 5my

= \(\frac{35mxy}{5my}\)

Now, we need to write each term in the expanded form and then cancel the terms which are common to both numerator and denominator.

= \(\frac{\not{5}   \times   7   \times   \not{m}   \times   x  \times   \not{y}}{\not{5}   \times   \not{m}   \times   \not{y}}\)

= 7x


2. Divide 14a7 by 2a5

14a7 ÷ 2a5

= \(\frac{14a^{7}}{2a^{5}}\)

Now, we need to write each term in the expanded form and then cancel the terms which are common to both numerator and denominator.

= \(\frac{\not{2}   \times   7   \times   \not{a}   \times   \not{a}   \times   \not{a}   \times   \not{a}   \times   \not{a}   \times   a   \times   a}{\not{2}   \times   \not{a}   \times   \not{a}   \times   \not{a}   \times   \not{a}   \times   \not{a}}\)

= 7 × a × a

= 7a2

Or, we can solve this in the other way.

14a7 ÷ 2a5

= \(\frac{14a^{7}}{2a^{5}}\)

= \(\frac{14}{2} \times \frac{a^{7}}{a^{5}}\)

Now we will write the each numerical part \((\frac{14}{2})\) in the expanded form and then cancel the terms which are common to both numerator and denominator and in case of literal part subtract the smaller power of a literal from bigger power of the same literal.

= \(\frac{\not{2} \times 7}{\not{2}} \times a^{7 - 5}\)

= 7 × 2

= 7a2



3. Divide the monomial: 81p3q6 by 27p6q3

81p3q6 ÷ 27p6q3

= \(\frac{81p^{3}q^{6}}{27p^{6}q^{3}}\)

= \(\frac{81}{27} \times \frac{p^{3}q^{6}}{p^{6}q^{3}}\)

Now we will write the each numerical part (\frac{81}{27}) in the expanded form and then cancel the terms which are common to both numerator and denominator and in case of literal part subtract the smaller power of a literal from bigger power of the same literal.

= \(\frac{\not{3}   \times   \not{3}   \times   \not{3}   \times   3}{\not{3}   \times   \not{3}   \times   \not{3}}   \times   \frac{q^{6   -   3}}{p^{6   -   3}}\)

= \(3 \times \frac{q^{3}}{p^{3}}\)

= \(\frac{3q^{3}}{p^{3}}\)

Terms of an Algebraic Expression

Types of Algebraic Expressions

Degree of a Polynomial

Addition of Polynomials

Subtraction of Polynomials

Power of Literal Quantities

Multiplication of Two Monomials

Multiplication of Polynomial by Monomial

Multiplication of two Binomials

Division of Monomials






Algebra Page

6th Grade Page

From Division of Monomials to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of 10, 100 and 1000 | Adding 10 | Adding 100 | Adding 1000

    Jan 10, 25 01:20 AM

    Adding 10
    Here we will learn Addition of 10, 100 and 1000 with the help of different examples.

    Read More

  2. Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

    Jan 10, 25 12:10 AM

    Estimating the Sum
    We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

    Read More

  3. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 09, 25 10:50 PM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  4. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 09, 25 10:07 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  5. Adding 4-digit Numbers without Regrouping | 4-digit Addition |Addition

    Jan 07, 25 11:45 AM

    Adding 4-digit Numbers without Regrouping
    We will learn adding 4-digit numbers without regrouping. We first arrange the numbers one below the other in place value columns and then add the digits under each column as shown in the following exa…

    Read More

Terms of an Algebraic Expression - Worksheet

Worksheet on Types of Algebraic Expressions

Worksheet on Degree of a Polynomial

Worksheet on Addition of Polynomials

Worksheet on Subtraction of Polynomials

Worksheet on Addition and Subtraction of Polynomials

Worksheet on Adding and Subtracting Polynomials

Worksheet on Multiplying Monomials

Worksheet on Multiplying Monomial and Binomial

Worksheet on Multiplying Monomial and Polynomial

Worksheet on Multiplying Binomials

Worksheet on Dividing Monomials