Decimal as Fraction

We will discuss how to express decimal as fraction.


0.5 = \(\frac{5}{10}\)

0.05 = \(\frac{5}{100}\)

0.005 = \(\frac{5}{1000}\)

2.5 = \(\frac{25}{10}\)

2.25 = \(\frac{225}{100}\)

2.275 = \(\frac{2275}{1000}\)


To convert a decimal into a fraction, remember the following steps.

Step I: Write the number as the numerator omitting the decimal point.

Step II: Write 1 in the denominator and add zeroes to it equal to the number of decimal places.


Note: When a decimal is read, each digit of the decimal part is read separately.


Let us consider some of the following examples on expressing a decimal as a fraction.

1. Convert 2.12 into a fraction.

Solution:

2.12 = 2 + 1 tenth + 2 hundredths

       = 2 + \(\frac{1}{10}\) + \(\frac{2}{100}\)

       = 2 + \(\frac{1 × 10}{10 × 10}\) + \(\frac{2}{100}\)

       = 2 + \(\frac{10}{100}\) + \(\frac{2}{100}\)

       = 2 + \(\frac{10 + 2}{100}\)

       = 2 + \(\frac{12}{100}\)

       = 2 + \(\frac{3}{25}\)

       = 2\(\frac{3}{25}\)




We write the place value of digits of decimal and then add as usual.


2. Convert 5.125 into a fraction.

Solution:

5.125 = 5 + 1 tenth + 2 hundredths + 5 thousandths

        = 5 + \(\frac{1}{10}\) + \(\frac{2}{100}\) + \(\frac{5}{1000}\)

        = 5 + \(\frac{1 × 100}{10 × 100}\) + \(\frac{2 × 10}{100 × 10}\) + \(\frac{5}{1000}\)

        = 5 + \(\frac{1 × 100}{10 × 100}\) + \(\frac{2 × 10}{100 × 10}\) + \(\frac{5}{1000}\)

        = 5 + \(\frac{100}{1000}\) + \(\frac{20}{1000}\) + \(\frac{5}{1000}\)

        = 5 + \(\frac{100 + 20 + 5}{1000}\)

        = 5 + \(\frac{125}{1000}\)

        = 5 + \(\frac{1}{8}\)

        = 5\(\frac{1}{8}\)






We write the place value of digits of decimal and then add as usual.


Express the following decimals in expanded form:

3.62 = 3 × 1 + \(\frac{6}{10}\) + \(\frac{2}{10}\)

75.86 = 7 × 10 + 5 × 1 + \(\frac{8}{10}\) + \(\frac{6}{10}\)

216.894 = 2 × 100 + 1 × 10 + 6 × 1 + \(\frac{8}{10}\) + \(\frac{9}{100}\) + \(\frac{4}{1000}\)

0.562 = \(\frac{5}{10}\) + \(\frac{6}{100}\) + \(\frac{2}{1000}\)


Express the following as decimal numbers:

For examples:

\(\frac{6}{10}\) + \(\frac{3}{100}\)                                      =             0.63

\(\frac{6}{10}\) + \(\frac{3}{100}\) + \(\frac{5}{1000}\)                           =             0.635

4 × 1 + \(\frac{3}{10}\) + \(\frac{2}{100}\)                         =              4.32

7 × 10 + 2 × 1 + \(\frac{8}{10}\) + \(\frac{9}{100}\)           =             72.89


Convert the following decimals to fractions in their lowest terms.

For examples:

0.36 = \(\frac{36}{100}\) = \(\frac{9}{25}\) [\(\frac{36 ÷ 4}{100 ÷ 4}\) = \(\frac{9}{25}\)]

5.65 = 5 + 0.65 = 5 + \(\frac{65}{100}\) = 5\(\frac{65}{100}\) = 5\(\frac{13}{20}\)]

14.05 = 14 + 0.05 = 14 + \(\frac{5}{100}\) = 14\(\frac{5}{100}\) = 14\(\frac{1}{20}\)]

3.004 = 3 + 0.004 = 3 + \(\frac{4}{1000}\) = 3\(\frac{4}{1000}\) = 3\(\frac{1}{250}\)]

Note: We always reduce the fraction converted from a decimal to its lowest form.


Questions and Answers on Conversion of a Decimals to a Fractions:

I. Convert the following decimals as fractions or mixed numerals:

(i) 0.6

(ii) 0.09

(iii) 3.65

(iv) 12.132

(v) 16.5

(vi) 5.46

(vii) 12.29

(viii) 0.008

(ix) 8.08

(x) 162.434

 

II. Express the following in the expanded form.

(i) 46.25

(ii) 115.32

(iii) 14.568

(iv) 19.005

(v) 77.777

 

III. Write as decimals:

(i) 2 × 1 + \(\frac{7}{10}\) + \(\frac{4}{100}\)

(ii) 3 × 10 + 5 × 1 + \(\frac{8}{10}\) + \(\frac{3}{1000}\)

(iii) 7 × 100 + 4 × 10 + 5 × 1 + \(\frac{4}{1000}\)

(iv) 9 × 100 + \(\frac{7}{10}\)

(v) \(\frac{5}{100}\) + \(\frac{8}{1000}\)





4th Grade Math Activities

From Decimal as Fraction to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More