Bar Graph or Column Graph

What is a bar graph or column graph?

bar graph or column graph is a pictorial representation of numerical data in the form of rectangles (or bars) of equal width and varying heights. 

These rectangles are drawn either vertically or horizontally, keeping equal space between them. The height (or length of a rectangle depends upon the numerical value it represents. 


How to draw a bar graph or column graph? 

                    or 

How to make a bar graph or column graph? 

Suppose some numerical data is given to us, and we have to represent graphs by a bar graph on a graph paper. 


We can make the graphs and charts by following the steps given below: 

Step 1: On a graph paper, draw a horizontal line OX and a vertical line OY. These lines are the x-axis and the y-axis respectively.

Step 2: Mark points at equal intervals along the x-axis. Below these points write the names the data items whose values are to be plotted.

Step 3: Choose a suitable scale. On that scale determine the heights of the bars for the given values.

Step 4: Mark off these heights parallel to the y-axis from the points taken in Step 2.

Step 5: On the x-axis, draw bars of equal width for the heights marked in Step 4. They should be centered on the points marked on the x-axis. These bars represent the numerical data.

Now let us look at some examples showing how bar graph or column graph are drawn.

Examples of bar graphs or column graphs:

1. The marks obtained by Ken in his annual examination are shown below:

Subject  French   English   Mathematics   Science   Social Studies  
Marks
Obtained
63
75
90
72
58

Draw a bar graphing charts to represent the above data.

Solution:

We can draw the charts and graphs by following these steps:

Step 1: On a graph paper, draw a horizontal line OX and a vertical line OY, representing x-axis and the y-axis respectively.

Step 2: Along OX, write the names of the subjects at points taken at uniform gaps.

Step 3: Choose the scale: 1 small division ≡ 1 mark.

Step 4: Then, the heights of the various bars are:

French = 63 small divisions,

English = 75 small divisions,

Mathematics = 90 small divisions,

Science = 72 small divisions and

Social studies = 58 small studies

Step 5: On the x-axis, draw bars of equal width and of heights obtained in Step 4 at the points marked in Step 2.

The completed bar charts or column charts are shown below.

Bar Graph


Graph showing marks obtained by Ken in five subjects



2. The number of cycles produced in a factory during five consecutive weeks is given below:


      Week        First   Second   Third   Fourth   Fifth 
  No. of Cycle Produced  
800
1300
1060
920
1440

Draw a bar graph or column graph representing the above information.

Solution:

We can draw the bar graphs by following these steps:

Step 1: On a graph paper, draw a horizontal line OX and a vertical line OY, representing the x-axis and the y-axis respectively.

Step 2: Along OX, mark the weeks at points taken at equal gaps.

Step 3: Choose the scale: 1 small division ≡ 20 cycles.

Step 4: The heights of the bars are:

Production in the 1ˢᵗ week = (¹/₂₀ × 800) = 40 small divisions

Production in the 2ⁿᵈ week = (¹/₂₀ × 1300) = 65 small divisions

Production in the 3ʳᵈ week = (¹/₂₀ × 1060) = 53 small divisions

Production m the 4ᵗʰ week = (¹/₂₀ × 920) = 46 small divisions

Production in the 5ᵗʰ week = (¹/₂₀ × 1440) = 72 small division

Step 5: Draw bars of equal width and of own heights calculated in Step 4 at the points marked in Step 2.

The graph bar or graph column is shown below:

Bar Graph Image



Bar graph showing the production of cycles in a factory during five consecutive weeks




3. The following table shows the exports earnings on America (in thousand million dollars) during five consecutive years:

Year  2001-02   2002-03   2003-04   2004-05   2005-06  
Export
(in thousand
million dollars)
130
142
160
204
156

Draw a bar graph representing the above data.

Solution:

We can make a bar graph by following these steps:

Step 1: On a graph paper, draw a horizontal line OX and a vertical line OY, representing the x-axis and the y-axis respectively.

Step 2: Along OX, mark the years at points taken at equal gaps.

Step 3: Choose the scale: 1 small division ≡ 2 thousand million dollars.

Step 4: Then, the heights of the bars are:

Export in 2001—2002 = (¹/₂ × 130) = 65 small divisions

Export in 2002—2003 = (¹/₂ × 142) = 71 small divisions

Export in 2003—2004 = (¹/₂ × 160) = 80 small divisions

Export in 2004—2005 = (¹/₂ × 204) = 102 small divisions

Export in 2005—2006 = (¹/₂ × 156) = 78 small divisions

Step 5: At the points marked in Step 2, draw bars of equal width and of heights calculated in Step 4.


Bar Graph



Bar graph showing export earnings of America during five consecutive years


How to read bar graphs?

From a bar graph, we can draw certain conclusions. This is known as reading or interpretation of the bar graph or column graph.


4. Given below is a graph showing the number of electric bulbs sold in a shop during a week.

Column Graph


Read the bar graph or column graph carefully and answer the questions given below:

  (i) On which day of the week was the sale minimum?

  (ii) On which day of the week was the sale maximum?

  (iii) What was the total sale during the week?

  (iv) What is the ratio between the minimum sale and the maximum sale?

Solution:

(i) It is clear from the bar graph that the bar of minimum height corresponds to the sale on Friday.

Therefore, the sale was minimum on Friday.


(ii) From the bar graph, we find that the bar of maximum height corresponds to the sale on Monday.

Therefore, the sale was maximum on Monday.


(iii) The total sale during the week = (225 + 100 + 150 + 200 + 75 + 100) bulbs = 850 bulbs.


(iv) The minimum sale during the week = 75 bulbs.

The maximum sale during the week = 225 bulbs.

Therefore, minimum sale : maximum sale = 75 : 225 = 1 : 3.


5. A column graph is given below.

Column Graph Image



Production of foodgrains in an Indian state during five consecutive years



Read the bar graph carefully and answer the question given below:

(i) What information is given by the bar graph?

(ii) In which year was the production maximum?

(iii) After which year was there a sudden fall in the production?

(iv) Find the ratio between the maximum production and the minimum production during the given period.

Solution:

(i) The given bar graph shows the annual production (in million tones) of food grains in an American state during the period from 2002 to 2006.


(ii) It is clear that the bar of maximum height corresponds to the year 2004. So the production was maximum in that year.


(iii) From the bar graph, we find that there was a sudden fall in the production after the year 2004.


(iv) The maximum production during 5 years = 100 million tones.

The minimum production during 5 years = 40 million tones.

Therefore, maximum production : minimum production = 100 : 40 = 5 : 2.


 Constructing and Interpreting Bar Graphs or Column Graphs

Bar Graph or Column Graph


 Bar Graphs or Column Graphs - Worksheets

Worksheet on Bar Graphs or Column Graphs









8th Grade Math Practice

From Bar Graph or Column Graph to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  2. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 11, 25 02:48 AM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  3. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More

  4. Addition of 10, 100 and 1000 | Adding 10 | Adding 100 | Adding 1000

    Jan 10, 25 01:20 AM

    Adding 10
    Here we will learn Addition of 10, 100 and 1000 with the help of different examples.

    Read More

  5. Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

    Jan 10, 25 12:10 AM

    Estimating the Sum
    We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

    Read More