Area and Perimeter of a Semicircle and Quadrant of a Circle

We will learn how to find the Area and perimeter of a semicircle and Quadrant of a circle.

Area of a semicircle = \(\frac{1}{2}\)πr2

Perimeter of a semicircle = (π + 2)r.

Area and Perimeter of Semicircle

because a semicircle is a sector of sectorial angle 180°.

Area of a quadrant of a circle = \(\frac{1}{4}\)πr2.

Perimeter of a quadrant of a circle = (\(\frac{π}{2}\) + 2)r.

Area and Perimeter of Quadrant of a Circle

because a quadrant of a circle is a sector of the circle whose sectorial angle is 90°.

Here r is the radius of the circle.


Solved Examples on Area and perimeter of a semicircle and Quadrant of a circle:

1. The area of a semicircular region is 308 cm^2. Find its perimeter. (Use π = \(\frac{22}{7}\).)

Solution:

Let r be the radius. Then,

area = \(\frac{1}{2}\) ∙ πr^2

⟹ 308 cm^2 = \(\frac{1}{2}\) ∙ \(\frac{22}{7}\) ∙ r^2

⟹ 308 cm^2 = \(\frac{22}{14}\) ∙ r^2

⟹ \(\frac{22}{14}\) ∙ r^2 = 308 cm^2

⟹ r^2 = \(\frac{14}{22}\) ∙ 308 cm^2

⟹ r^2 = \(\frac{7}{11}\) ∙ 308 cm^2

⟹ r^2 = 7 × 28 cm^2

⟹ r^2 = 196 cm^2

⟹ r^2 = 14^2 cm^2

⟹ r = 14 cm.

Therefore, the radius of the circle is 14 cm.

Now, perimeter = (π + 2)r

                       = (\(\frac{22}{7}\) + 2) ∙ 14 cm

                       = \(\frac{36}{7}\)  ×  14 cm

                       = 36 × 2 cm

                       = 72 cm.


2. The perimeter of a sheet of paper in the shape of a quadrant of a circle is 75 cm. Find its area. (Use π = \(\frac{22}{7}\).)

Solution:

Let the radius be r. 

Perimeter and Area of Quadrant of a Circle

Then,

perimeter = (\(\frac{π}{2}\) + 2)r

⟹ 75 cm = (\(\frac{1}{2}\) ∙ π + 2)r

⟹ 75 cm = (\(\frac{ 1 }{2}\) ∙ \(\frac{22}{7}\)  + 2)r

⟹ 75 cm = (\(\frac{11}{7}\)  + 2)r

⟹ 75 cm = \(\frac{25}{7}\)r

⟹ \(\frac{25}{7}\)r = 75 cm

⟹ r = 75 × \(\frac{7}{25}\) cm

⟹ r = 3 × 7 cm

⟹ r = 21 cm.

Therefore, the radius of the circle is 21 cm.

Now, area = \(\frac{1}{4}\)πr^2

                = \(\frac{1}{4}\) ∙  \(\frac{22}{7}\) ∙ 21^2 cm^2

                = \(\frac{1}{4}\) ∙  \(\frac{22}{7}\) ∙ 21 ∙ 21 cm^2

                = \(\frac{693}{2}\) cm^2

                = 346.5 cm^2.

Therefore, area of the sheet of paper is 346.5 cm^2.





10th Grade Math

From Area and Perimeter of a Semicircle and Quadrant of a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More

  2. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 11, 25 02:48 AM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  3. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More

  4. Addition of 10, 100 and 1000 | Adding 10 | Adding 100 | Adding 1000

    Jan 10, 25 01:20 AM

    Adding 10
    Here we will learn Addition of 10, 100 and 1000 with the help of different examples.

    Read More

  5. Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

    Jan 10, 25 12:10 AM

    Estimating the Sum
    We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

    Read More