Angle Sum Property of a Quadrilateral

Theorem and Proof of angle sum property of a quadrilateral.

Prove that the sum of all the four angles of a quadrilateral is 360°.

Proof: Let ABCD be a quadrilateral. Join AC.

Clearly, ∠1 + ∠2 = ∠A ...... (i)

And, ∠3 + ∠4 = ∠C ...... (ii)

We know that the sum of the angles of a triangle is 180°.

Angle Sum Property of a Quadrilateral









Therefore, from ∆ABC, we have

∠2 + ∠4 + ∠B = 180° (Angle sum property of triangle)

From ∆ACD, we have 

∠1 + ∠3 + ∠D = 180° (Angle sum property of triangle)

Adding the angles on either side, we get;

∠2 + ∠4 + ∠B + ∠1 + ∠3 + ∠D = 360°

⇒ (∠1 + ∠2) + ∠B + (∠3 + ∠4) + ∠D = 360°

⇒ ∠A + ∠B + ∠C + ∠D = 360° [using (i) and (ii)].

Hence, the sum of all the four angles of a quadrilateral is 360°.


Solved examples of angle sum property of a quadrilateral:

1. The angle of a quadrilateral are (3x + 2)°, (x – 3), (2x + 1)°, 2(2x + 5)° respectively. Find the value of x and the measure of each angle.

Solution:            

Using angle sum property of quadrilateral, we get

 (3x + 2)°+ (x – 3)° + (2x + 1)° +  2(2x + 5)°= 360°                 

⇒ 3x + 2 + x - 3 + 2x + 1 + 4x + 10 = 360°

⇒ 10x + 10 = 360                              

⇒ 10x = 360 – 10                              

⇒ 10x = 350                       

⇒ x = 350/10                     

⇒ x = 35                                              

Therefore, (3x + 2) = 3 × 35 + 2 = 105 + 2 = 107°

(x – 3) = 35 – 3 = 32°

(2x + 1) = 2 × 35 + 1 = 70 + 1 = 71°

2(2x + 5) = 2(2 × 35 + 5) = 2(70 + 5) = 2 × 75 = 150°

Therefore, the four angles of the quadrilateral are 32°, 71° 107°, 150° respectively.


2. In a quadrilateral PQRS, PQ + QR + RS + SP < 2 (PR + QS).

Solution:            

Proof of Angle Sum Property of a Quadrilateral









In ∆POS, PO + OS > PS …………… (i)

In ∆SOR, SO + OR > SR …………… (ii)

In ∆QOR, QO + OR > QR …………… (iii)

In ∆POQ, PO + OQ > PQ …………… (iv)

(i) + (ii) + (iii) + (iv) (Using triangle inequality property)

PO + OS + OS + OR + OQ + OR + OP + OQ > PS + SR + QR + PQ

⇒ 2 (OP + OQ + OR + OS) > PQ + QR + CS + DP

⇒ 2 [(OP + OR) + (OQ + OS)] > PQ + QR + CS + DP

⇒ 2 (PR + QS) > PQ + QR + RS + SP


The above examples will help us to solve various types of problems based on angle sum property of a quadrilateral.


7th Grade Math Problems 

8th Grade Math Practice 

From Angle Sum Property of a Quadrilateral to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 10, 25 03:02 PM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  2. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More

  3. Addition of 10, 100 and 1000 | Adding 10 | Adding 100 | Adding 1000

    Jan 10, 25 01:20 AM

    Adding 10
    Here we will learn Addition of 10, 100 and 1000 with the help of different examples.

    Read More

  4. Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

    Jan 10, 25 12:10 AM

    Estimating the Sum
    We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 09, 25 10:07 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More