Addition of Mixed Fractions

We will learn how to solve addition of mixed fractions or addition of mixed numbers. There are two methods to add the mixed fractions.

For example, add 2\(\frac{3}{5}\) and 1\(\frac{3}{10}\).

We can use the two methods to add the mixed numbers.

Method 1:

2\(\frac{3}{5}\) + 1\(\frac{3}{10}\)

= (2 + 1) + \(\frac{3}{5}\) + \(\frac{3}{10}\)

 = 3 + \(\frac{3}{5}\) + \(\frac{3}{10}\)

= 3 + \(\frac{3 × 2}{5 × 2}\) + \(\frac{3 × 1}{10 × 1}\), 

[L.C.M. of 5 and 10 = 10]

= 3 + \(\frac{6}{10}\) + \(\frac{3}{10}\)

= 3 + \(\frac{6 + 3}{10}\) 

= 3 + \(\frac{9}{10}\)

= 3\(\frac{9}{10}\)



Step I: We add the whole numbers, separately.


Step II: To add fractions, we take L.C.M. of the denominators and change the fractions into like fractions.



Step III: We find the sum of the whole numbers and the fractions in the simplest form.


Method 2:

2\(\frac{3}{5}\) + 1\(\frac{3}{10}\)

= (5 × 2) + \(\frac{3}{5}\) + (10 × 1) + \(\frac{3}{10}\)

= \(\frac{13}{5}\) + \(\frac{13}{10}\)

= \(\frac{13 × 2}{5 × 2}\) + \(\frac{13 × 1}{10 × 1}\), [L.C.M. of 5 and 10 = 10]

= \(\frac{26}{10}\) + \(\frac{13}{10}\)

= \(\frac{26 + 13}{10}\)

= \(\frac{39}{10}\)

= 3\(\frac{9}{10}\)


Step I: We change the mixed fractions into improper fractions.



Step II: We take L.C.M. of the denominators and change the fractions into like fractions.


Step III: We add the like fractions and express the sum to its simplest form.


Now let us consider some of the examples on addition of mixed numbers using Method 1.

1. Add 1\(\frac{1}{6}\) , 2\(\frac{1}{8}\) and 3\(\frac{1}{4}\)

Solution:

1\(\frac{1}{6}\) + 2\(\frac{1}{8}\) + 3\(\frac{1}{4}\)

Let us add whole numbers and fraction parts separately.

= (1 + 2 + 3) + (\(\frac{1}{6}\) + \(\frac{1}{8}\) + \(\frac{1}{4}\))

= 6 + (\(\frac{1}{6}\) + \(\frac{1}{8}\) + \(\frac{1}{4}\))

= 6 + \(\frac{1 × 4}{6 × 4}\) + \(\frac{1 × 3}{8 × 3}\) + \(\frac{1 × 6}{4 × 6}\); [Since, the L.C.M. of 6, 8 and 4 = 24]

= 6 + \(\frac{4}{24}\) + \(\frac{3}{24}\) + \(\frac{6}{24}\)

= 6 + \(\frac{4 + 3 + 6}{24}\)

= 6 + \(\frac{13}{24}\)

= 6\(\frac{13}{24}\)


2. Add 5\(\frac{1}{9}\), 2\(\frac{1}{12}\) and \(\frac{3}{4}\).

Solution:

5\(\frac{1}{9}\) + 2\(\frac{1}{12}\) + \(\frac{3}{4}\)

Let us add whole numbers and fraction parts separately.

= (5 + 2 + 0) + (\(\frac{1}{9}\) + \(\frac{1}{12}\) + \(\frac{3}{4}\))

= 7 + \(\frac{1}{9}\) + \(\frac{1}{12}\) + \(\frac{3}{4}\)

= 7 + \(\frac{1 × 4}{9 × 4}\) + \(\frac{1 × 3}{12 × 3}\) + \(\frac{3 × 9}{4 × 9}\), [Since the L.C.M. of 9, 12 and 4 = 36]

= 7 + \(\frac{4}{36}\) + \(\frac{3}{36}\) + \(\frac{27}{36}\)

= 7 + \(\frac{4 + 3 + 27}{36}\)

= 7 + \(\frac{34}{36}\)

= 7 + \(\frac{17}{18}\),

= 7\(\frac{17}{18}\).


3. Add \(\frac{5}{6}\), 2\(\frac{1}{2}\) and 3\(\frac{1}{4}\)

Solution:

\(\frac{5}{6}\) + 2\(\frac{1}{2}\) + 3\(\frac{1}{4}\)

Let us add whole numbers and fraction parts separately.

= (0 + 2 + 3) + \(\frac{5}{6}\) + \(\frac{1}{2}\) + \(\frac{1}{4}\)

= 5 + \(\frac{5}{6}\) + \(\frac{1}{2}\) + \(\frac{1}{4}\)

= 5 + \(\frac{5 × 2}{6 × 2}\) + \(\frac{1 × 6}{2 × 6}\) + \(\frac{1 × 3}{4 × 3}\), [Since, the L.C.M. of 6, 2 and 4 = 12]

= 5 + \(\frac{10}{12}\) + \(\frac{6}{12}\) + \(\frac{3}{12}\)

= 5 + \(\frac{10 + 6 + 3}{12}\)

= 5 + \(\frac{19}{12}\); [Here, fraction \(\frac{19}{12}\) can write as mixed number.]

= 5 + 1\(\frac{7}{12}\)

= 5 + 1 + \(\frac{7}{12}\)

= 6\(\frac{7}{12}\)


4. Add 3\(\frac{5}{8}\) and 2\(\frac{2}{3}\).

Solution:

Let us add whole numbers and fraction parts separately.

3\(\frac{5}{8}\) + 2\(\frac{2}{3}\)

= (3 + 2) + (\(\frac{5}{8}\) + \(\frac{2}{3}\))

5 + (\(\frac{5}{8}\) + \(\frac{2}{3}\))

L.C.M. of denominator 8 and 3 = 24.

= 5 + \(\frac{5 × 3}{8 × 3}\) + \(\frac{2 × 8}{3 × 8}\), (Since, L.C.M. of 8 and 3 = 24)

= 5 + \(\frac{15}{24}\) + \(\frac{16}{24}\)

= 5 + \(\frac{15 + 16}{24}\)

= 5 + \(\frac{31}{24}\)

= 5 + 1\(\frac{7}{24}\).

= 6\(\frac{7}{24}\).


Now let us consider some of the examples on addition of mixed numbers using Method 2.

1. Add 2\(\frac{3}{9}\), 1\(\frac{1}{6}\) and 2\(\frac{2}{3}\)

Solution:

2\(\frac{3}{9}\) + 1\(\frac{1}{6}\) + 2\(\frac{2}{3}\)

= \(\frac{(9 × 2) + 3}{9}\) + \(\frac{(6 × 1) + 1}{6}\) + \(\frac{(3 × 2) + 2}{3}\)

= \(\frac{21}{9}\) + \(\frac{7}{6}\) + \(\frac{8}{3}\), (L.C.M. of 9, 6 and 3 = 18)

= \(\frac{21 × 2}{9 × 2}\) + \(\frac{7 × 3}{6 × 3}\) + \(\frac{8 × 6}{3 × 6}\)

= \(\frac{42}{18}\) + \(\frac{21}{18}\) + \(\frac{48}{18}\)

= \(\frac{42 + 21 + 48}{18}\)

= \(\frac{111}{18}\)

= \(\frac{37}{6}\)

= 6\(\frac{1}{6}\)


2. Add2\(\frac{1}{2}\), 3\(\frac{1}{3}\) and 4\(\frac{1}{4}\).

Solution:

2\(\frac{1}{2}\) + 3\(\frac{1}{3}\) + 4\(\frac{1}{4}\)

= \(\frac{(2 × 2) + 1}{2}\) + \(\frac{(3 × 3) + 1}{3}\) + \(\frac{(4 × 4) + 1}{3}\)

= \(\frac{5}{2}\) + \(\frac{10}{3}\) + \(\frac{17}{4}\), (L.C.M. of 2, 3 and 4 = 12)

\(\frac{5 × 6}{2 × 6}\) + \(\frac{10 × 4}{3 × 4}\) + \(\frac{17 × 3}{4 × 3}\), (Since, L.C.M. of 2, 3 and 4 = 12)

= \(\frac{30}{12}\) + \(\frac{40}{12}\) + \(\frac{51}{12}\)

= \(\frac{30 + 40 + 51}{12}\)

= \(\frac{121}{12}\)

= 10\(\frac{1}{12}\)


3. Add 3\(\frac{5}{8}\) and 2\(\frac{2}{3}\).

Solution:

3\(\frac{5}{8}\) + 2\(\frac{2}{3}\)

Let us convert the mixed fractions into improper fractions.

= \(\frac{(8 × 3) + 5}{8}\) + \(\frac{(3 × 2) + 2}{3}\)

= \(\frac{29}{8}\) + \(\frac{8}{3}\),

L.C.M. of denominator 8 and 3 = 24.

\(\frac{29 × 3}{8 × 3}\) + \(\frac{8 × 8}{3 × 8}\), (Since, L.C.M. of 8 and 3 = 24)

= \(\frac{87}{24}\) + \(\frac{64}{24}\)

= \(\frac{87 + 64}{24}\)

= \(\frac{151}{24}\)

= 6\(\frac{7}{24}\).

Addition of Mixed Fractions


Word Problem on Addition of Mixed Fraction:

The doctor advises every child to drink 3\(\frac{1}{2}\) litres of water in morning, 4\(\frac{1}{4}\) litres in the after noon and \(\frac{1}{2}\) litre before going to bed. How much water should a child drink every day?

Solution:

3\(\frac{1}{2}\) + 4\(\frac{1}{4}\) + \(\frac{1}{2}\)

Let us add whole numbers and fraction parts separately.

= (3 + 4 + 0) + (\(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{2}\))

7 + (\(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{2}\))

L.C.M. of denominators 2, 4 and 2 = 4.

= 7 + \(\frac{1 × 2}{2 × 2}\) + \(\frac{1 × 1}{4 × 1}\) + \(\frac{1 × 2}{2 × 2}\), [Since, the L.C.M. of 2, 4 and 2 = 4.]

= 7 + \(\frac{2}{4}\) + \(\frac{1}{4}\) + \(\frac{2}{4}\)

= 7 + \(\frac{2 + 1 + 2}{4}\)

= 7 + \(\frac{5}{4}\)

[Here, the fraction \(\frac{5}{4}\) can write as mixed number.]

= 7 + 1\(\frac{1}{4}\)

= 8\(\frac{1}{4}\)

Therefore, 8\(\frac{1}{4}\) litres of water should a child drink every day.

 Related Concepts







4th Grade Math Activities

From Addition of Mixed Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 10, 25 03:02 PM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  2. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More

  3. Addition of 10, 100 and 1000 | Adding 10 | Adding 100 | Adding 1000

    Jan 10, 25 01:20 AM

    Adding 10
    Here we will learn Addition of 10, 100 and 1000 with the help of different examples.

    Read More

  4. Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

    Jan 10, 25 12:10 AM

    Estimating the Sum
    We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 09, 25 10:07 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More