Addition of Mixed Fractions

We will learn how to solve addition of mixed fractions or addition of mixed numbers. There are two methods to add the mixed fractions.

For example, add 2\(\frac{3}{5}\) and 1\(\frac{3}{10}\).

We can use the two methods to add the mixed numbers.

Method 1:

2\(\frac{3}{5}\) + 1\(\frac{3}{10}\)

= (2 + 1) + \(\frac{3}{5}\) + \(\frac{3}{10}\)

 = 3 + \(\frac{3}{5}\) + \(\frac{3}{10}\)

= 3 + \(\frac{3 × 2}{5 × 2}\) + \(\frac{3 × 1}{10 × 1}\), 

[L.C.M. of 5 and 10 = 10]

= 3 + \(\frac{6}{10}\) + \(\frac{3}{10}\)

= 3 + \(\frac{6 + 3}{10}\) 

= 3 + \(\frac{9}{10}\)

= 3\(\frac{9}{10}\)



Step I: We add the whole numbers, separately.


Step II: To add fractions, we take L.C.M. of the denominators and change the fractions into like fractions.



Step III: We find the sum of the whole numbers and the fractions in the simplest form.


Method 2:

2\(\frac{3}{5}\) + 1\(\frac{3}{10}\)

= (5 × 2) + \(\frac{3}{5}\) + (10 × 1) + \(\frac{3}{10}\)

= \(\frac{13}{5}\) + \(\frac{13}{10}\)

= \(\frac{13 × 2}{5 × 2}\) + \(\frac{13 × 1}{10 × 1}\), [L.C.M. of 5 and 10 = 10]

= \(\frac{26}{10}\) + \(\frac{13}{10}\)

= \(\frac{26 + 13}{10}\)

= \(\frac{39}{10}\)

= 3\(\frac{9}{10}\)


Step I: We change the mixed fractions into improper fractions.



Step II: We take L.C.M. of the denominators and change the fractions into like fractions.


Step III: We add the like fractions and express the sum to its simplest form.


Now let us consider some of the examples on addition of mixed numbers using Method 1.

1. Add 1\(\frac{1}{6}\) , 2\(\frac{1}{8}\) and 3\(\frac{1}{4}\)

Solution:

1\(\frac{1}{6}\) + 2\(\frac{1}{8}\) + 3\(\frac{1}{4}\)

Let us add whole numbers and fraction parts separately.

= (1 + 2 + 3) + (\(\frac{1}{6}\) + \(\frac{1}{8}\) + \(\frac{1}{4}\))

= 6 + (\(\frac{1}{6}\) + \(\frac{1}{8}\) + \(\frac{1}{4}\))

= 6 + \(\frac{1 × 4}{6 × 4}\) + \(\frac{1 × 3}{8 × 3}\) + \(\frac{1 × 6}{4 × 6}\); [Since, the L.C.M. of 6, 8 and 4 = 24]

= 6 + \(\frac{4}{24}\) + \(\frac{3}{24}\) + \(\frac{6}{24}\)

= 6 + \(\frac{4 + 3 + 6}{24}\)

= 6 + \(\frac{13}{24}\)

= 6\(\frac{13}{24}\)


2. Add 5\(\frac{1}{9}\), 2\(\frac{1}{12}\) and \(\frac{3}{4}\).

Solution:

5\(\frac{1}{9}\) + 2\(\frac{1}{12}\) + \(\frac{3}{4}\)

Let us add whole numbers and fraction parts separately.

= (5 + 2 + 0) + (\(\frac{1}{9}\) + \(\frac{1}{12}\) + \(\frac{3}{4}\))

= 7 + \(\frac{1}{9}\) + \(\frac{1}{12}\) + \(\frac{3}{4}\)

= 7 + \(\frac{1 × 4}{9 × 4}\) + \(\frac{1 × 3}{12 × 3}\) + \(\frac{3 × 9}{4 × 9}\), [Since the L.C.M. of 9, 12 and 4 = 36]

= 7 + \(\frac{4}{36}\) + \(\frac{3}{36}\) + \(\frac{27}{36}\)

= 7 + \(\frac{4 + 3 + 27}{36}\)

= 7 + \(\frac{34}{36}\)

= 7 + \(\frac{17}{18}\),

= 7\(\frac{17}{18}\).


3. Add \(\frac{5}{6}\), 2\(\frac{1}{2}\) and 3\(\frac{1}{4}\)

Solution:

\(\frac{5}{6}\) + 2\(\frac{1}{2}\) + 3\(\frac{1}{4}\)

Let us add whole numbers and fraction parts separately.

= (0 + 2 + 3) + \(\frac{5}{6}\) + \(\frac{1}{2}\) + \(\frac{1}{4}\)

= 5 + \(\frac{5}{6}\) + \(\frac{1}{2}\) + \(\frac{1}{4}\)

= 5 + \(\frac{5 × 2}{6 × 2}\) + \(\frac{1 × 6}{2 × 6}\) + \(\frac{1 × 3}{4 × 3}\), [Since, the L.C.M. of 6, 2 and 4 = 12]

= 5 + \(\frac{10}{12}\) + \(\frac{6}{12}\) + \(\frac{3}{12}\)

= 5 + \(\frac{10 + 6 + 3}{12}\)

= 5 + \(\frac{19}{12}\); [Here, fraction \(\frac{19}{12}\) can write as mixed number.]

= 5 + 1\(\frac{7}{12}\)

= 5 + 1 + \(\frac{7}{12}\)

= 6\(\frac{7}{12}\)


4. Add 3\(\frac{5}{8}\) and 2\(\frac{2}{3}\).

Solution:

Let us add whole numbers and fraction parts separately.

3\(\frac{5}{8}\) + 2\(\frac{2}{3}\)

= (3 + 2) + (\(\frac{5}{8}\) + \(\frac{2}{3}\))

5 + (\(\frac{5}{8}\) + \(\frac{2}{3}\))

L.C.M. of denominator 8 and 3 = 24.

= 5 + \(\frac{5 × 3}{8 × 3}\) + \(\frac{2 × 8}{3 × 8}\), (Since, L.C.M. of 8 and 3 = 24)

= 5 + \(\frac{15}{24}\) + \(\frac{16}{24}\)

= 5 + \(\frac{15 + 16}{24}\)

= 5 + \(\frac{31}{24}\)

= 5 + 1\(\frac{7}{24}\).

= 6\(\frac{7}{24}\).


Now let us consider some of the examples on addition of mixed numbers using Method 2.

1. Add 2\(\frac{3}{9}\), 1\(\frac{1}{6}\) and 2\(\frac{2}{3}\)

Solution:

2\(\frac{3}{9}\) + 1\(\frac{1}{6}\) + 2\(\frac{2}{3}\)

= \(\frac{(9 × 2) + 3}{9}\) + \(\frac{(6 × 1) + 1}{6}\) + \(\frac{(3 × 2) + 2}{3}\)

= \(\frac{21}{9}\) + \(\frac{7}{6}\) + \(\frac{8}{3}\), (L.C.M. of 9, 6 and 3 = 18)

= \(\frac{21 × 2}{9 × 2}\) + \(\frac{7 × 3}{6 × 3}\) + \(\frac{8 × 6}{3 × 6}\)

= \(\frac{42}{18}\) + \(\frac{21}{18}\) + \(\frac{48}{18}\)

= \(\frac{42 + 21 + 48}{18}\)

= \(\frac{111}{18}\)

= \(\frac{37}{6}\)

= 6\(\frac{1}{6}\)


2. Add2\(\frac{1}{2}\), 3\(\frac{1}{3}\) and 4\(\frac{1}{4}\).

Solution:

2\(\frac{1}{2}\) + 3\(\frac{1}{3}\) + 4\(\frac{1}{4}\)

= \(\frac{(2 × 2) + 1}{2}\) + \(\frac{(3 × 3) + 1}{3}\) + \(\frac{(4 × 4) + 1}{3}\)

= \(\frac{5}{2}\) + \(\frac{10}{3}\) + \(\frac{17}{4}\), (L.C.M. of 2, 3 and 4 = 12)

\(\frac{5 × 6}{2 × 6}\) + \(\frac{10 × 4}{3 × 4}\) + \(\frac{17 × 3}{4 × 3}\), (Since, L.C.M. of 2, 3 and 4 = 12)

= \(\frac{30}{12}\) + \(\frac{40}{12}\) + \(\frac{51}{12}\)

= \(\frac{30 + 40 + 51}{12}\)

= \(\frac{121}{12}\)

= 10\(\frac{1}{12}\)


3. Add 3\(\frac{5}{8}\) and 2\(\frac{2}{3}\).

Solution:

3\(\frac{5}{8}\) + 2\(\frac{2}{3}\)

Let us convert the mixed fractions into improper fractions.

= \(\frac{(8 × 3) + 5}{8}\) + \(\frac{(3 × 2) + 2}{3}\)

= \(\frac{29}{8}\) + \(\frac{8}{3}\),

L.C.M. of denominator 8 and 3 = 24.

\(\frac{29 × 3}{8 × 3}\) + \(\frac{8 × 8}{3 × 8}\), (Since, L.C.M. of 8 and 3 = 24)

= \(\frac{87}{24}\) + \(\frac{64}{24}\)

= \(\frac{87 + 64}{24}\)

= \(\frac{151}{24}\)

= 6\(\frac{7}{24}\).

Addition of Mixed Fractions


Word Problem on Addition of Mixed Fraction:

The doctor advises every child to drink 3\(\frac{1}{2}\) litres of water in morning, 4\(\frac{1}{4}\) litres in the after noon and \(\frac{1}{2}\) litre before going to bed. How much water should a child drink every day?

Solution:

3\(\frac{1}{2}\) + 4\(\frac{1}{4}\) + \(\frac{1}{2}\)

Let us add whole numbers and fraction parts separately.

= (3 + 4 + 0) + (\(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{2}\))

7 + (\(\frac{1}{2}\) + \(\frac{1}{4}\) + \(\frac{1}{2}\))

L.C.M. of denominators 2, 4 and 2 = 4.

= 7 + \(\frac{1 × 2}{2 × 2}\) + \(\frac{1 × 1}{4 × 1}\) + \(\frac{1 × 2}{2 × 2}\), [Since, the L.C.M. of 2, 4 and 2 = 4.]

= 7 + \(\frac{2}{4}\) + \(\frac{1}{4}\) + \(\frac{2}{4}\)

= 7 + \(\frac{2 + 1 + 2}{4}\)

= 7 + \(\frac{5}{4}\)

[Here, the fraction \(\frac{5}{4}\) can write as mixed number.]

= 7 + 1\(\frac{1}{4}\)

= 8\(\frac{1}{4}\)

Therefore, 8\(\frac{1}{4}\) litres of water should a child drink every day.

 Related Concepts







4th Grade Math Activities

From Addition of Mixed Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 20, 24 01:00 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  3. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  4. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 18, 24 02:23 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More