In Worksheet on matrix the questions are based on finding unknown elements and matrices from matrix equation.
1. Let A = \(\begin{bmatrix} 1 & 2\\ 2 & 3 \end{bmatrix}\), B = \(\begin{bmatrix} 2 & 1\\ 3 & 2 \end{bmatrix}\) and C = \(\begin{bmatrix} 1 & 3\\ 3 & 1 \end{bmatrix}\)
(i) Find the matrix C(B – A).
(ii) Find A(B + C).
(iii) Prove that A(B + C) = AB + AC.
2. If A = \(\begin{bmatrix} 3 & 2\\ 1 & 0 \end{bmatrix}\), B = \(\begin{bmatrix} -1 & 3\\ 0 & 1 \end{bmatrix}\) then verify the truth of the following.
(i) (A + B)2 = A2 + B2 + 2AB
(ii) (A + B)(A – B) = A2 – B2
3. If X = \(\begin{bmatrix} 4 & 1\\ -1 & 2 \end{bmatrix}\), show that 6X – X2 = 9I, where I is the unit matrix.
4. (i) Show that X = \(\begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}\) satisfies the relation X2 – 2X – 3I = O, where I is the unit matrix of order 2 × 2 and O is the null matrix of order 2 × 2.
(ii) Let A = \(\begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix}\), B = \(\begin{bmatrix} 2 & 3\\ -1 & 0 \end{bmatrix}\). Find A2 + AB + B2.
5. Find the matrix X from the matrix equation \(\begin{bmatrix} 2 & 1\\ 5 & 0 \end{bmatrix}\) – 3X = \(\begin{bmatrix} -7 & 4\\ 2 & 6 \end{bmatrix}\).
6. (i) If A = \(\begin{bmatrix} 1 & x\\ 0 & 1 \end{bmatrix}\) and \(\begin{bmatrix} 3 & 4\\ 5 & y \end{bmatrix}\) such that A + 2B = 5\(\begin{bmatrix} \frac{7}{5} & 0\\ 2 & 1 \end{bmatrix}\) then find x and y.
(ii) If 2\(\begin{bmatrix} 3 & 4\\ 5 & x \end{bmatrix}\) + \(\begin{bmatrix} 1 & y\\ 0 & 1 \end{bmatrix}\) = \(\begin{bmatrix} 7 & x\\ 10 & 5 \end{bmatrix}\), find x and y.
7. If \(\begin{bmatrix} 4\\ x\\ -y \end{bmatrix}\)\(\begin{bmatrix} 2 & 1 \end{bmatrix}\) = \(\begin{bmatrix} 8 & 4\\ 6 & 3\\ -8 & -4 \end{bmatrix}\), find x and y.
8. If \(\begin{bmatrix} 4 & -5\\ 6 & 7 \end{bmatrix}\)\(\begin{bmatrix} x\\ y \end{bmatrix}\) = \(\begin{bmatrix} -1\\ 2 \end{bmatrix}\), find x and y.
9. If \(\begin{bmatrix} 1 & 2\\ 3 & 3 \end{bmatrix}\)\(\begin{bmatrix} x & 0\\ 0 & y \end{bmatrix}\) = \(\begin{bmatrix} x & 0\\ 9 & 0 \end{bmatrix}\), find x and y.
10. If \(\begin{bmatrix} -3 & 2\\ 0 & -5 \end{bmatrix}\)\(\begin{bmatrix} x\\ 2 \end{bmatrix}\) = \(\begin{bmatrix} -5\\ y \end{bmatrix}\), find x and y.
11. If \(\begin{bmatrix} 2 & 3\\ -4 & 0 \end{bmatrix}\)\(\begin{bmatrix} x & 1\\ y & 1 \end{bmatrix}\) = \(\begin{bmatrix} 4 & z\\ -3 & -4 \end{bmatrix}\), then find x, y and z.
12. Let A = \(\begin{bmatrix} 2 & 12\\ 0 & 1
\end{bmatrix}\) and B = \(\begin{bmatrix} 4 & x\\ 0 & 1 \end{bmatrix}\).
If A2 = B, find x.
13. Let A = \(\begin{bmatrix} 1 & 3\\ 1 & 3 \end{bmatrix}\) and B = \(\begin{bmatrix} 3 & a\\ b & 2 \end{bmatrix}\). If AB = O, where O is the null matrix, find a and b.
14. Find x and y if \(\begin{bmatrix} x & 3x\\ y & 4y \end{bmatrix}\)\(\begin{bmatrix} 2\\ 1 \end{bmatrix}\) = \(\begin{bmatrix} 5\\ 12 \end{bmatrix}\).
15. Let A = \(\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\). Find the matrix B such that A2 = 2A + 3B.
16. Let A = \(\begin{bmatrix} 1 & -3\\ 2 & 4 \end{bmatrix}\), B = \(\begin{bmatrix} -1\\ 2 \end{bmatrix}\) and C is a matrix such that AC = B then find the matrix C.
17. Let A = \(\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\). Find the matrix B such that AB = I, where I is the unit matrix of the order 2 × 2.
18. Given A = \(\begin{bmatrix} 2 & -1\\ 2 & 0 \end{bmatrix}\), B = \(\begin{bmatrix} -3 & 2\\ 4 & 0 \end{bmatrix}\) and C = \(\begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix}\). Find the matrix X such that A + X = 2B + C.
19. If \(\begin{bmatrix} 1 & 4\\ -2 & 3 \end{bmatrix}\) + 2M = 3\(\begin{bmatrix} 3 & 2\\ 0 & -3 \end{bmatrix}\), find the matrix M.
20. (i) Show that X = \(\begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}\) satisfies the relation X2 – 2X – 3I = O, where I is the unit matrix of order 2 × 2 and O is the null matrix of order 2 × 2.
(ii) Let A = \(\begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix}\), B = \(\begin{bmatrix} 2 & 3\\ -1 & 0 \end{bmatrix}\). Find A2 + AB + B2.
Answers:
1. (i) \(\begin{bmatrix} 4 & -4\\ 4 & -4 \end{bmatrix}\)
(ii) \(\begin{bmatrix} 15 & 10\\ 24 & 17 \end{bmatrix}\)
2. (i) False
(ii) False
4. (ii) \(\begin{bmatrix} 4 & 9\\ 5 & 4 \end{bmatrix}\)
5. \(\begin{bmatrix} 3 & -1\\ 1 & -2 \end{bmatrix}\)
6. (i) x = -8, y = 2
(ii) x = 2, y = -8
7. x = 3, y = -4
8. x = \(\frac{3}{58}\), y = \(\frac{7}{29}\)
9. x = 3, y = 0
10. x = 3, y = -10
11. x = \(\frac{3}{4}\), y = \(\frac{5}{6}\), z = 5
12. x = 36
13. a = -6, b = -1
14. x = 1, y = 2
15. \(\begin{bmatrix} 1 & \frac{4}{3}\\ 4 & \frac{11}{3} \end{bmatrix}\)
16. \(\begin{bmatrix} \frac{1}{5}\\ \frac{2}{5} \end{bmatrix}\)
17. \(\begin{bmatrix} \frac{4}{5} & -\frac{1}{5}\\ -\frac{3}{5} & \frac{2}{5} \end{bmatrix}\)
18. \(\begin{bmatrix} -7 & 5\\ 6 & 2 \end{bmatrix}\)
19. \(\begin{bmatrix} 4 & 1\\ 1 & -6 \end{bmatrix}\).
20. (ii) \(\begin{bmatrix} 4 & 9\\ 5 & 4 \end{bmatrix}\).
From Worksheet on Matrix to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 23, 24 03:45 PM
Nov 23, 24 03:14 PM
Nov 23, 24 02:51 PM
Nov 23, 24 12:22 AM
Nov 22, 24 12:34 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.