Worksheet on Irrational Numbers

From previous topics of irrational numbers it has become clear that rationalization of denominator is one of the most important steps done while doing calculations which involve irrational denominators. In the previous topic of rationalization we have learnt how to rationalize the denominator. In this topic, we will get to solve some problems regarding rationalization of denominators. Below are given some problems involving calculation of rationalization of denominator:

1. Rationalize \(\frac{1}{\sqrt{11}}\).

2. Rationalize \(\frac{1}{\sqrt{37}}\).

3. Rationalize \(\frac{1}{\sqrt{17}}\).

4. Rationalize \(\frac{1}{\sqrt{23}}\).



5. Rationalize \(\frac{1}{\sqrt{46}}\).

6. Rationalize \(\frac{1}{\sqrt{37}}\).

7. Rationalize \(\frac{1}{1+\sqrt{3}}\).

8. Rationalize \(\frac{1}{1+\sqrt{7}}\).

9. Rationalize \(\frac{1}{4+\sqrt{13}}\).

10. Rationalize \(\frac{1}{7+\sqrt{29}}\).

11. Rationalize \(\frac{1}{11-\sqrt{13}}\).

12. Rationalize \(\frac{1}{9-\sqrt{57}}\).

13. Rationalize \(\frac{1}{13-\sqrt{15}}\).

14. Rationalize \(\frac{1}{\sqrt{13}-\sqrt{11}}\).

15. Rationalize \(\frac{1}{\sqrt{21}-\sqrt{29}}\). 

16. Rationalize \(\frac{1}{\sqrt{31}+\sqrt{41}}\).

17. Rationalize \(\frac{1}{\sqrt{21}+\sqrt{37}}\).

18. Rationalize \(\frac{2}{\sqrt{5}+\sqrt{7}}\).

19. Rationalize \(\frac{5}{\sqrt{28}+\sqrt{37}}\).

20. Rationalize \(\frac{6}{\sqrt{53}-\sqrt{49}}\).

21. Rationalize \(\frac{17}{\sqrt{53}-\sqrt{49}}\).

22. Rationalize the denominator and find the conjugate of the fraction so formed- \(\frac{1}{\sqrt{5}-\sqrt{4}}\).

23. Rationalize the denominator and find the conjugate of the resulting fraction- \(\frac{2}{\sqrt{11}-\sqrt{9}}\).

24. Rationalize the fraction and find the conjugate of the resulting fraction- \(\frac{6}{\sqrt{21}-\sqrt{19}}\).

25. Rationalize the given fraction and find the conjugate of the resulting fraction- \(\frac{10}{\sqrt{59}-\sqrt{41}}\).

26. Rationalize the fraction and find the conjugate of the resulting fraction- \(\frac{19}{21-\sqrt{41}}\).

27. Find the value of ‘a’ in the given equation:

      \(\frac{1}{\sqrt{17}-\sqrt{15}}\) = \(\frac{\sqrt{a}+\sqrt{15}}{2}\)


28. Find the value of ‘a’ in the given equation:

      \(\frac{1}{\sqrt{19}-\sqrt{12}}\) = \(\frac{\sqrt{19}+\sqrt{a}}{7}\)


29. Find the value of ‘a’ in the given equation:

      \(\frac{2}{11+\sqrt{14}}\) = \frac{2(11-\sqrt{14})}{a}\)


30. Solve the following problem:

      \(\frac{1}{9+\sqrt{3}} + \frac{1}{3+\sqrt{2}}\).


31. Solve the following arithematic:

      \(\frac{2}{11+\sqrt{15}} + \frac{9}{2+\sqrt{8}}\).


32. Solve the following:

      \(\frac{11}{\sqrt{8}} + \frac{15}{\sqrt{21}}\).



Solutions:


1. \(\frac{\sqrt{11}}{11}\)

2. \(\frac{\sqrt{37}}{37}\)

3. \(\frac{\sqrt{17}}{17}\)

4. \(\frac{\sqrt{23}}{23}\)

5. \(\frac{\sqrt{46}}{46}\)

6. \(\frac{\sqrt{71}}{71}\)

7. \(\frac{\sqrt{3}-1}{2}\)

8. \(\frac{\sqrt{7}-1}{6}\)

9. \(\frac{4-\sqrt{13}}{3}\)

10. \(\frac{7-\sqrt{29}}{20}\)

11. \(\frac{11+\sqrt{13}}{108}\)

12. \(\frac{9+\sqrt{57}}{24}\)

13. \(\frac{-13-\sqrt{15}}{2}\)

14. \(\frac{\sqrt{13}+\sqrt{11}}{2}\)

15. \(\frac{\sqrt{29}-\sqrt{21}}{8}\)

16. \(\frac{\sqrt{41}-\sqrt{31}}{10}\)

17. \(\frac{\sqrt{37}-\sqrt{21}}{16}\)

18. \(\frac{\sqrt{37}-\sqrt{21}}{16}\)

19. \(\frac{5(\sqrt{37}-\sqrt{28})}{9}\)

20. \(\frac{3(\sqrt{53}+7)}{2}\)

21. \(\frac{17(\sqrt{53}+7)}{4}\)

22. \(\frac{\sqrt{5}-\sqrt{4}}{1}\)

23. \(\frac{\sqrt{11}+\sqrt{9}}{1}\)

24. \(\frac{3(\sqrt{19}-\sqrt{21})}{1}\)

25. \(\frac{5(\sqrt{41}-\sqrt{59})}{9}\)

26. \(\frac{19(\sqrt{41}-21)}{400}\)

27. a = √17

28. a = √12

29. a = 107

30. \(\frac{-171-7\sqrt{3}-78\sqrt{2}}{546}\)

31. \(\frac{477\sqrt{2}-2\sqrt{15}-455}{106}\)

32. \(\frac{231+120\sqrt{21}}{168}\)


Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers





9th Grade Math

From Worksheet on Irrational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:09 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More