In Worksheet on elimination of unknown angle(s) using Trigonometric identities we will prove various types of practice questions on Trigonometric identities.
Here you will get 11 different types of elimination of unknown angle using Trigonometric identities questions with some selected questions hints.
1. Eliminate θ (theta) in each of the following:
(i) x = a sec θ, y = b tan θ
(ii) a sin θ = p, b tan θ = q
(iii) sin θ + cos θ = m, tan θ + cot θ = n
(iv) sin θ – cos θ = m, sec θ - csc θ = b
2. If sin θ + cos θ = m and sec θ + csc θ = n, then prove that
n(m2 – 1) = 2m.
Hint: n = sec θ + csc θ
⟹ n = \(\frac{1}{cos θ}\) + \(\frac{1}{sin θ}\)
⟹ n = \(\frac{sin θ + cos θ}{sin θ cos θ}\)
⟹ n = \(\frac{m}{sin θ cos θ}\)
⟹ sin θ cos θ = \(\frac{m}{n}\) ......... (i)
Now, m2 – 1 = (sin θ + cos θ)2 - 1
= (sin2 θ + sin2 θ + 2 sin θ cos θ) - 1
= 1 + 2 sin θ cos θ - 1
= 2 sin θ cos θ
= 2\(\frac{m}{n}\), From (i)
3. If l1 cos θ + m1 sin θ + n1 = 0 and l2 cos θ + m2 sin θ + n2 = 0 then prove that
(m1n2 – n1m2)2 + (n1l2 – n2l1)2 = (l1m2 – l2m1)2
4. If a sin2 ϕ + b cos2 ϕ = c and p sin2 ϕ + q cos2 ϕ = r then prove that
(b – c)(r – p) = (c – a)(q – r).
Hint: \(\frac{b - c}{c - a}\) = \(\frac{b - (a sin^{2} ϕ + b cos^{2} ϕ)}{(a sin^{2} ϕ + b cos^{2} ϕ) - a}\)
= \(\frac{(b - a) sin^{2} ϕ}{(b - a) cos^{2} ϕ}\)
= tan2 ϕ.
Similarly, \(\frac{q - r}{r - p}\) = \(\frac{q - (p sin^{2} ϕ + q cos^{2} ϕ)}{(p sin^{2} ϕ + q cos^{2} ϕ) - p}\)
= \(\frac{(q - p) sin^{2} ϕ}{(q - p) cos^{2} ϕ}\)
= tan2 ϕ.
Therefore, \(\frac{b - c}{c - a}\) = \(\frac{q - r}{r - p}\).
5. If a sec θ + b tan θ + c = 0 and a’ sec θ + b’ tan θ + c’ = 0 then prove that
(bc’ – b’c)2 – (ca’ – ac’)2 = (ab’ – a’b)2.
6. If \(\frac{x}{a cos θ}\) = \(\frac{y}{b sin θ}\) and \(\frac{ax}{cos θ}\) - \(\frac{by}{sin θ}\) = a2 – b2, prove that
\(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1.
Hint: \(\frac{x}{cos θ}\) ∙ b - \(\frac{y}{sin θ}\) ∙ a + 0 = 0 and \(\frac{x}{cos θ}\) ∙ a - \(\frac{y}{sin θ}\) ∙ b - (a2 - b2) = 0.
By cross multiplication, \(\frac{\frac{x}{cos θ}}{a(a^{2} - b^{2})}\) = \(\frac{\frac{y}{sin θ}}{b(a^{2} - b^{2})}\) = \(\frac{1}{(a^{2} - b^{2})}\)
⟹ \(\frac{x}{a}\) = cos θ, \(\frac{y}{b}\) = sin θ. Square these and add.
7. If tan A + sin A = m and tan A - sin A = n then prove that
m2 – n2 = 4 \(\sqrt{mn}\).
8. If x sin3 A + y cos3 A = sin A ∙ cos A and x sin A – y cos A = 0 then prove that
x2 + y2 = 1.
Hint: x sin A - y cos A = 0
⟹ tan A = \(\frac{y}{x}\)
Again, x ∙ \(\frac{sin^{2} A}{cos A}\) + y ∙ \(\frac{cos^{2} A}{sin A}\) = 1
⟹ x ∙ \(\frac{y}{x}\) sin A + y ∙ \(\frac{x}{y}\) cos A = 1
⟹ x cos A + y sin A = 1
Now, (x sin A - y cos A)2 + (x cos A + y sin A)2 = 02 + 12
9. If csc β – sin β = m3; sec β – cos β = n3 then prove that,
m2n2(m2 + n2) = 1.
10. If a = r cos θ cos β, b = r cos θ sin β and c = r sin θ then prove that,
a2 + b2 + c2 = r2.
11. If p = a sec A cos B, q = b sec A sin B and r = c tan A then prove that,
\(\frac{p^{2}}{a^{2}}\) + \(\frac{q^{2}}{b^{2}}\) - \(\frac{r^{2}}{c^{2}}\) = 1.
Answers
1. (i) \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1.
(ii) \(\frac{a^{2}}{p^{2}}\) - \(\frac{b^{2}}{q^{2}}\) = 1.
(iii) n(m2 – 1) = 2
(iv) b(1 – a2) = 2a
From Worksheet on Elimination of Unknown Angle(s) Using Trigonometric Identities to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 23, 24 03:45 PM
Nov 23, 24 03:14 PM
Nov 23, 24 02:51 PM
Nov 23, 24 12:22 AM
Nov 22, 24 12:34 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.