Worksheet on Comparison between Rational Numbers

Comparison of rational numbers or fractions can be easily done by following some steps as mentioned below:

1. A positive integer is always greater than zero.

2. A negative integer is always less than zero.

3. A positive integer is always greater than a negative integer.

4. In case of fractions, remember to make the denominator of the fraction to be positive. If not, make it positive by multiplying both numerator and denominator by (-1).

5. For like fractions (i.e., same denominators) comparison is just done by comparing the numerators of the fractions and the one having higher numerator will be greater of the two fractions.

6. For unlike fractions (i.e., different denominators) first of all denominators are made same by taking the L.C.M. of the denominators and then comparing them as in case of like fractions.

Based on above mentioned steps try to solve some questions:

1. (i) Compare \(\frac{2}{3}\) and \(\frac{7}{3}\).

(ii) Compare \(\frac{4}{5}\) and \(\frac{3}{-5}\)

(iii) Compare \(\frac{8}{11}\) and \(\frac{9}{22}\).

(iv) Compare \(\frac{-23}{45}\) and \(\frac{-3}{9}\).

(v) Compare \(\frac{13}{-24}\) and \(\frac{9}{-4}\)


2. Arrange the following in ascending order:

(i) \(\frac{2}{5}\), \(\frac{6}{5}\), \(\frac{1}{5}\), \(\frac{13}{5}\), \(\frac{9}{5}\).

(ii) \(\frac{19}{25}\), \(\frac{16}{25}\), \(\frac{27}{25}\), \(\frac{7}{5}\).

(iii) \(\frac{-2}{9}\), \(\frac{11}{3}\), \(\frac{-3}{27}\), \(\frac{13}{-9}\).

(iv) \(\frac{4}{5}\), \(\frac{6}{16}\), \(\frac{9}{20}\), \(\frac{13}{5}\).

(v) \(\frac{-21}{105}\), \(\frac{12}{21}\), \(\frac{16}{5}\), \(\frac{20}{105}\).


3. Arrange the following in descending order:

(i) \(\frac{7}{16}\), \(\frac{9}{16}\), \(\frac{21}{16}\), \(\frac{12}{16}\)

(ii) \(\frac{3}{17}\), \(\frac{12}{17}\), \(\frac{21}{34}\), \(\frac{13}{-34}\)

(iii) \(\frac{5}{15}\), \(\frac{-16}{40}\), \(\frac{24}{5}\), \(\frac{18}{-25}\)

(iv) \(\frac{14}{21}\), \(\frac{1}{7}\), \(\frac{-17}{21}\), \(\frac{-19}{21}\)


4. Aman and Suraj are taxi drivers. Aman started his journey at 8:30 a.m. and stopped at 9:30 a.m. by covering a distance of 20 km. on the other hand, Suraj travelled 50 km in 2 hours. Assuming that they travel at constant speed, compare the distances travelled by them in first hour of their journey.


5. Find the largest and the smallest rational numbers among the following.

(i) \(\frac{4}{7}\), - \(\frac{4}{7}\) and - \(\frac{7}{15}\) 

(ii) 0, - \(\frac{5}{6}\), \(\frac{2}{3}\) and \(\frac{- 13}{14}\)


6. (i) Arrange \(\frac{3}{5}\), - \(\frac{2}{3}\), - \(\frac{4}{5}\) and \(\frac{5}{6}\) in ascending order.

(ii) Write - \(\frac{10}{9}\), \(\frac{2}{9}\), \(\frac{5}{12}\) and \(\frac{7}{18}\) in descending order.



Solutions:


1. (i) \(\frac{7}{3}\) > \(\frac{2}{3}\)

(ii) \(\frac{4}{5}\) > \(\frac{3}{-5}\)

(iii) \(\frac{8}{11}\) > \(\frac{9}{22}\)

(iv) \(\frac{-23}{45}\) < \(\frac{-3}{9}\)

(v) \(\frac{13}{-24}\) > \(\frac{9}{-4}\)


2. (i) \(\frac{1}{5}\), \(\frac{2}{5}\), \(\frac{6}{5}\), \(\frac{9}{5}\), \(\frac{13}{5}\).

(ii) \(\frac{16}{25}\), \(\frac{19}{25}\), \(\frac{27}{25}\), \(\frac{7}{5}\).

(iii) \(\frac{13}{-9}\), \(\frac{-2}{9}\), \(\frac{-3}{27}\), \(\frac{11}{3}\).

(iv) \(\frac{6}{16}\), \(\frac{9}{20}\), \(\frac{4}{5}\), \(\frac{13}{5}\).

(v) \(\frac{-21}{105}\), \(\frac{20}{105}\), \(\frac{12}{21}\), \(\frac{16}{5}\).


3. (i) \(\frac{21}{16}\), \(\frac{12}{16}\), \(\frac{9}{16}\), \(\frac{7}{16}\).

(ii) \(\frac{12}{17}\), \(\frac{21}{34}\), \(\frac{3}{17}\), \(\frac{13}{-34}\).

(iii) \(\frac{24}{5}\), \(\frac{5}{15}\), \(\frac{-16}{40}\), \(\frac{18}{-25}\).

(iv) \(\frac{14}{21}\), \(\frac{1}{7}\), \(\frac{-17}{21}\), \(\frac{-19}{21}\)


4. Suraj travelled more than Aman.

5. (i) Largest = \(\frac{4}{7}\), smallest = - \(\frac{4}{7}\)

(ii) Largest = \(\frac{2}{3}\), smallest = - \(\frac{-13}{14}\)


6. (i) - \(\frac{4}{5}\) < - \(\frac{2}{3}\) < \(\frac{3}{5}\) < \(\frac{5}{6}\)

(ii) \(\frac{5}{12}\) > \(\frac{7}{18}\) > \(\frac{2}{9}\) > \(\frac{-10}{9}\)


Rational Numbers

Rational Numbers

Decimal Representation of Rational Numbers

Rational Numbers in Terminating and Non-Terminating Decimals

Recurring Decimals as Rational Numbers

Laws of Algebra for Rational Numbers

Comparison between Two Rational Numbers

Rational Numbers Between Two Unequal Rational Numbers

Representation of Rational Numbers on Number Line

Problems on Rational numbers as Decimal Numbers

Problems Based On Recurring Decimals as Rational Numbers

Problems on Comparison Between Rational Numbers

Problems on Representation of Rational Numbers on Number Line

Worksheet on Comparison between Rational Numbers

Worksheet on Representation of Rational Numbers on the Number Line






9th Grade Math

From Worksheet on Comparison between Rational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication Table | Learn Tables from 0 – 25 | Multiplication Table

    Jan 14, 25 11:09 PM

    multiplication table
    In math multiplication table we will learn the tables from 0 – 25. These multiplication tables help the students to learn the essential multiplication facts. Multiplication tables are very important f…

    Read More

  2. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 11:02 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  4. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  5. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More