Practice the worksheet on algebraic expressions to the lowest terms. The questions are based on simplifying by cancelling the algebraic fractions to reduce them to their simplest form.
1. Reduce the algebraic expressions to its simplest form:
(i) \(\frac{1}{z^{2} - 5z + 6} - \frac{1}{z^{2} - 4z + 3}\)
(ii) \(\frac{1}{2b^{2} + b - 6} + \frac{1}{3b^{2} + 5b - 2}\)
(iii) \(\frac{2(a - 3)}{a^{2} - 5a + 6} + \frac{3(a - 1)}{a^{2} - 4a + 3} + \frac{5(a - 2)}{a^{2} - 3a + 2}\)
(iv) \(\frac{u}{9} + \frac{2}{3} + \frac{4}{u - 6} - \frac{2}{3}\frac{1}{1 - \frac{6}{u}}\)
(v) \(\frac{a}{a^{2} - b^{2}} - \frac{1}{a - b} + \frac{1}{a + b} + \frac{1}{a} - \frac{1}{b} + \frac{a^{2} - ab + b^{2}}{ab(a - b)}\)
(vi) \(\frac{x^{2} - yz}{yz} - \frac{xz - y^{2}}{xz} - \frac{xy - z^{2}}{xy}\)
2. Reduce by multiplying and dividing the algebraic fractions to its lowest term:
(i) \(\frac{z^{2} - 121}{z^{2} - 4} \div \frac{z + 11}{z + 2}\)
(ii) \(\frac{x - 3y}{x + 2y} \div \frac{x^{2} - 9y^{2}}{x^{2} - 4y^{2}}\)
(iii) \(\frac{a^{2} - 2a}{a^{2} + 3a - 10} \div \frac{a^{2} + 4a - 21}{a^{2} + 2a - 15}\)
(iv) \(\frac{14k^{2} - 7k}{12k^{3} + 24k^{2}} \div \frac{2k - 1}{k^{2} + 2k}\)
(v) \(\frac{m^{2}n^{2} + 3mn}{4m^{2} - 1} \div \frac{mn + 3}{2m + 1}\)
(vi) \(\frac{n^{2} - 15n + 4}{n^{2} - 7n + 10} \times \frac{n^{2} - n - 2}{n^{2} + 2n - 3} \div \frac{n^{2} - 5n + 4}{n^{2} + 8n + 15}\)
3. Simplify by reducing to its simplest form:
(i) \(\frac{2z - 3}{9} - \frac{z + 2}{6} + \frac{5z + 8}{12}\)
(ii) \(\frac{m - 7}{15} + \frac{m - 9}{25} - \frac{m + 3}{45}\)
(iii) \(\frac{2k + 5}{k} - \frac{k + 3}{2k} - \frac{27}{8k^{2}}\)
(iv) \(\frac{x - y}{xy} + \frac{y - z}{yz} + \frac{z - x}{zx}\)
(v) \(\frac{m - 2n}{2m} - \frac{m - 5n}{4m} + \frac{m + 7n}{8m}\)
(vi) \(\frac{q + r}{2p} + \frac{r + p}{4q} - \frac{p - q}{3r}\)
Answers for the worksheet on algebraic expressions to the lowest terms are given below to check the exact answers of the above simplification.
Answers:
1. (i) \(\frac{1}{(z – 1) (z – 2) (z – 3)}\)
(ii) \(\frac{5b – 4}{(2b – 3) (b + 2) (3b – 1)}\)
(iii) \(\frac{2(5a^{2} – 21a + 21)}{(a – 1) (a – 2) (a – 3)}\)
(iv) \(\frac{u}{9}\)
(v) \(\frac{2a - b}{a^{2} - b^{2}}\)
(vi) \(\frac{x^{3} + y^{3} + z^{3} – 3xyz }{xyz}\)
2. (i) \(\frac{z - 11}{z - 2}\)
(ii) \(\frac{x – 2y}{x + 3y}\)
(iii) \(\frac{a}{a + 7}\)
(iv) \(\frac{7}{12}\)
(v) \(\frac{mn}{2m - 1}\)
(vi) \(\frac{(n^{2} – 15n + 4) (n + 1) (n + 5)}{(n - 5) (n - 4) (n - 1) (n - 1)}\)
3. (i) \(\frac{17z}{36}\)
(ii) \(\frac{19m - 201}{225}\)
(iii) \(\frac{12k^{2} + 28k - 27}{8k^{2}}\)
(iv) 0
(v) \(\frac{3(m + 3n)}{8m}\)
(vi) \(\frac{6q^{2}r + 6qr^{2} + 3pr^{2} + 3p^{2}r – 4p^{2}q + 4pq^{2}}{12pqr}\)
8th Grade Math Practice
From Worksheet on Algebraic Expressions to the Lowest Terms to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jan 14, 25 11:53 PM
Jan 14, 25 11:02 PM
Jan 14, 25 01:57 PM
Jan 14, 25 12:29 AM
Jan 14, 25 12:21 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.