Word Problems on Proportion

We will learn how to solve the word problems on proportion. We know if the phone numbers are the ratio of the first two is equal to the ratio of the last two then the phone numbers are said to be in proportional and the four numbers are said to be in proportion.


1. Which number is to be added to each of 2, 4, 6 and 10 to make the sums proportional?  

Solution:

Let the required number k be added to each.

Then, according to the question

2 + k, 4 + k, 6 + k and 10 + k will be proportional.

Therefore,

\(\frac{2 + k}{4 + k}\) = \(\frac{6 + k}{10 + k}\)

⟹ (2 + k)(10 + k) = (4 + k)(6 +k)

⟹ 20 + 2k + 10k + k\(^{2}\) = 24 + 4k + 6k + k\(^{2}\)

⟹ 20 + 12k + k\(^{2}\) = 24 + 10k + k\(^{2}\)

⟹ 20 + 12k = 24 + 10k

⟹ 12k - 10k = 24 - 20

⟹ 2k = 4

⟹ k = \(\frac{4}{2}\)

⟹ k = 2

Therefore, the required number is 2.


2. What number should be added to 6, 15, 20 and 43 to make the numbers proportional?

Solution:

Let the required number be k.

Then, according to the problem

6 + k, 15 + k, 20 + k and 43 + k are proportional numbers.

Therefore, \(\frac{6 + k}{15 + k}\) = \(\frac{20 + k}{43 + k}\)

⟹ (6 + k)(43 + k) = (15 + k)(20 + k)

⟹ 258 + 6k + 43k + k\(^{2}\) = 300 + 15k + 20k + k\(^{2}\)

⟹ 258 + 49k = 300+ 35k

⟹ 49k – 35k = 300 - 258

⟹ 14k = 42

⟹ k = \(\frac{42}{14}\)

⟹ k = 3

Therefore, the required number is 3.



3. Find the third proportional of 2m\(^{2}\) and 3mn.

Solution:

Let the third proportional be k.

Then, according to the problem

2m\(^{2}\), 3mn and k are in continued proportion.

Therefore,

\(\frac{2m^{2}}{3mn}\) = \(\frac{3mn}{k}\)

⟹ 2m\(^{2}\)k = 9m\(^{2}\)n\(^{2}\)

⟹ 2k = 9n\(^{2}\)

⟹ k = \(\frac{9n^{2}}{2}\)

Therefore, the third proportional is \(\frac{9n^{2}}{2}\).



4. John, David and Patrick have $ 12, $ 15 and $ 19 respectively with them. Their father asks them to give him equal amount so that the money held by them now are in continued proportion. Find the amount taken from each of them.

Solution:

Let the amount taken from each of them is $ p.

Then, according to the problem

12 – p, 15 – p and 19 – p are in continued proportion.

Therefore,

\(\frac{12 - p}{15 - p}\) = \(\frac{15 - p}{19 - p}\)

⟹ (12 – p)(19 – p) = (15 – p)\(^{2}\)

⟹ 228 – 12p – 19p + p\(^{2}\) = 225 – 30p + p\(^{2}\)

⟹ 228 – 31p = 225 – 30p

⟹ 228 – 225 = 31 p – 30p

⟹ 3 = p

⟹ p = 3

Therefore, the required amount is $ 3.

 

5. Find the fourth proportional of 6, 9 and 12.

Solution:

Let the fourth proportional be k.

Then, according to the problem

6, 9, 12 and k are in proportional

Therefore,

\(\frac{6}{9}\) = \(\frac{12}{k}\)

⟹ 6k = 9 × 12

⟹ 6k = 108

⟹ k = \(\frac{108}{6}\)

⟹ k = 18

Therefore, the fourth proportional is 18.

 


6. Find two numbers whose mean proportional is 16 and the third proportional is 128.

Solution:

Let the required number be a and b.

Then, according to the question,

\(\sqrt{ab}\) = 16, [Since, 16 is the mean proportional of a, b]

and \(\frac{b^{2}}{a}\) = 128, [Since, the third proportional of a, b is 128]

Now, \(\sqrt{ab}\) = 16

⟹ ab = 16\(^{2}\)

⟹ ab = 256


Again, \(\frac{b{2}}{a}\) = 128

⟹ b\(^{2}\) = 128a

⟹ a = \(\frac{b^{2}}{128}\)

Substituting a = \(\frac{b^{2}}{128}\) in ab = 256

⟹\(\frac{b^{2}}{128}\) × b = 256

⟹\(\frac{b^{3}}{128}\) = 256

⟹ b\(^{3}\) = 128 × 256

⟹  b\(^{3}\) = 2\(^{7}\)  × 2\(^{8}\)

⟹  b\(^{3}\) = 2\(^{7 + 8}\)

⟹  b\(^{3}\) = 2\(^{15}\)

⟹ b = 2\(^{5}\)

⟹ b = 32

So, from equation a = \(\frac{b^{2}}{128}\) we get

a = \(\frac{32^{2}}{128}\)

⟹ a = \(\frac{1024}{128}\)

⟹ a = 8

Therefore, the required numbers are 8 and 32.

● Ratio and proportion











10th Grade Math

From Word Problems on Proportion to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

    Nov 23, 24 03:45 PM

    Quarter Past and Quarter To
    The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute…

    Read More

  2. Half Past an Hour | What does Half Past Mean? | Half an Hour|Half Past

    Nov 23, 24 03:14 PM

    Half Past 1
    We learnt that, one hour is equal to 60 minutes. When one hour is divided into two, it is half an hour or 30 minutes. The minute hand points at 6. We say, 30 minutes past an hour or half past an hour…

    Read More

  3. Telling the Time | Teaching Time | Analogue Clock| Reading Time

    Nov 23, 24 02:51 PM

    Wall Clock
    Teaching time is an interactive activity for telling time. This activity helps students to learn how to read the clock to tell time using the analogue clock. While reading or observing the time on a

    Read More

  4. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 23, 24 12:22 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Nov 22, 24 12:34 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More