Volume and Surface Area of Cube

What is Cube?

A cuboid is a cube if its length, breadth and height are equal.

In a cube, all the faces are squares which are equal in area and all the edges are equal. A dice is an example of a cube.

Volume and Surface Area of Cube

Volume of a Cube (V) = (edge)3 = a3

Total surface Area of a Cube (S) = 6(edge)2 = 6a2

Diagonal a Cube (d) = √3(edge) = √3a

Where a = edge

Problems on Volume and Surface Area of Cube:

1. If the edge of a cube measures 5 cm, find (i) it volume, (ii) its surface area, and (iii) the length of a diagonal.

Solution:

(i) volume = (edge)3

                = 53 cm3

                = 125 cm3

(ii) Surface area = 6(edge)2

                        = 6 × 52 cm2

                        = 6 × 25 cm2

                        = 150 cm2

(iii) The length of a diagonal = √3(edge)

                                          = √3 × 5 cm.

                                          = 5√3 cm.


2. If the surface area of a cube is 96 cm2, find its volume.

Solution:

Let the edge of the cube be x.

Then, its surface area = 6x2

Therefore, 96 cm2 = 6x2

⟹ x2 = \(\frac{96 cm^{2}}{6}\)

⟹ x2 = 16 cm2

⟹ x = 4 cm.

Therefore, edge = 4 cm.

Therefore, the volume = (edge)3

                                 = 43 cm3

                                 = 64 cm3.


3. A cube of edge 2 cm is divided into cubes of edge 1 cm. How many cubes will be made? Find the total surface area of the smaller cubes.

Solution:

Volume of the bigger cube = (edge)3

                                       = 23 cm3

                                       = 8 cm3.

Volume of each of the smaller cubes = (edge)3

                                                     = 13 cm3

                                                     = 1 cm3

Therefore, the number of smaller cubes = \(\frac{8 cm^{3}}{1 cm^{3}}\)

                                                          = 8

The total surface area of a smaller cube = 6(edge)2

                                                          = 6 × 1 cm2

                                                          = 6 cm2

Therefore, the total surface area of the eight smaller cubes = 8 × 6 cm= 48 cm2.





9th Grade Math

From Volume and Surface Area of Cube to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:20 AM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  2. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  3. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  4. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More

  5. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More