Uniform Rate of Depreciation

We will discuss here how to apply the principle of compound interest in the problems of uniform rate of depreciation.

If the rate of decrease is uniform, we denote this as uniform decrease or depreciation.

If the present value P of a quantity decreases at the rate of r% per unit of time then the value Q of the quantity after n units of time is given by

Q = P(1 - \(\frac{r}{100}\))\(^{n}\) and depreciation in value = P - Q = P{1 – (1 - \(\frac{r}{100}\))\(^{n}\)}

If the present population of a car = P, rate of depreciation = r% per annum then the price of the car after n years is Q, where

Q = P(1 - \(\frac{r}{100}\))\(^{n}\) and depreciation = P - Q = P{1 – (1 - \(\frac{r}{100}\))\(^{n}\)}


The fall of efficiency of a machine due to constant use, decrease in valuations of old buildings and furniture, decrease in valuations of the movable properties of the transports, decrease in the number of diseases as a result of alertness come under uniform decrease or depreciation.



Solved examples on the principle of compound interest in the uniform rate of depreciation:

1. The price of a machine depreciates by 10% every year. If the machine is bought for $ 18000 and sold after 3 years, what price will it fetch?

Solution:

The present price of the machine, P = $ 18000, r = 10, n = 3

Q = P(1 - \(\frac{r}{100}\))\(^{n}\)

⟹ Q = 18000(1 - \(\frac{10}{100}\))\(^{3}\)

⟹ Q = 18000(1 - \(\frac{1}{10}\))\(^{3}\)

⟹ Q = 18000(\(\frac{9}{10}\))\(^{3}\)

⟹ Q = 18000 × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\))

⟹ Q = 18000 × (\(\frac{9 × 9 × 9}{10 × 10 × 10}\))

⟹ Q = 18 × 81 × 9

        = 13122

Therefore, the machine will fetch 13122 after 3 years.

 

2. The value of a machine in a factory depreciates at 10% of its value at the beginning of the year. If its present value be $ 60,000, what will be its estimated value after 3 years?

Solution:

Let the present value of the machine (P) = Rs. 10000, r = 10, n = 3

Q = P(1 - \(\frac{r}{100}\))\(^{n}\)

⟹ Q = 60,000(1 - \(\frac{10}{100}\))\(^{3}\)

⟹ Q = 60,000(1 - \(\frac{1}{10}\))\(^{3}\)

⟹ Q = 60,000(\(\frac{9}{10}\))\(^{3}\)

⟹ Q = 60,000 × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\))

⟹ Q = 60,000 × (\(\frac{9 × 9 × 9}{10 × 10 × 10}\))

⟹ Q = 43,740

Therefore, the value of the machine will be$ 43,740 after 3 years.


3. The price of a car depreciates by 20% every year. By what percent will the price of the car reduce after 3 years?

Solution:

Let the present price of the car be P. Here, r = 20 and n = 3

Q = P(1 - \(\frac{r}{100}\))\(^{n}\)

⟹ Q = P(1 - \(\frac{20}{100}\))\(^{3}\)

⟹ Q = P(1 - \(\frac{1}{5}\))\(^{3}\)

⟹ Q = P(\(\frac{4}{5}\))\(^{3}\)

⟹ Q = P × (\(\frac{4}{5}\)) × (\(\frac{4}{5}\)) × (\(\frac{4}{5}\))

⟹ Q = (\(\frac{64P}{125}\))

Therefore, the reduced price = (\(\frac{64P}{125}\)); so reduction in price = P - (\(\frac{64P}{125}\)) = (\(\frac{61P}{125}\))

Therefore, the percent reduction in price = (\(\frac{\frac{61P}{125}}{P}\)) × 100% = \(\frac{61}{125}\) × 100% = 48.8%


4. The cost of a school bus depreciates by 10% every year. If its present worth is $ 18,000; what will be its value after three years?

Solution:

The present population P = 18,000,

Rate (r) = 10

Unit of time being year (n) = 3

Now applying the formula of depreciation we get:

Q = P(1 - \(\frac{r}{100}\))\(^{n}\)

⟹ Q = $18,000(1 - \(\frac{10}{100}\))\(^{3}\)

⟹ Q = $18,000(1 - \(\frac{1}{10}\))\(^{3}\)

⟹ Q = $18,000(\(\frac{9}{10}\))\(^{3}\)

⟹ Q = $18,000 × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\)) × (\(\frac{9}{10}\))

⟹ Q = $18,000 × (\(\frac{9 × 9 × 9}{10 × 10 × 10}\))

⟹ Q = $18 × 81 × 9

        = $13,122

Therefore, the value of the school bus will be $ 13,122 after 3 years.

 Compound Interest

Compound Interest

Compound Interest with Growing Principal

Compound Interest with Periodic Deductions

Compound Interest by Using Formula

Compound Interest when Interest is Compounded Yearly

Compound Interest when Interest is Compounded Half-Yearly

Compound Interest when Interest is Compounded Quarterly

Problems on Compound Interest

Variable Rate of Compound Interest

Difference of Compound Interest and Simple Interest

Practice Test on Compound Interest

Uniform Rate of Growth


 Compound Interest - Worksheet

Worksheet on Compound Interest

Worksheet on Compound Interest when Interest is Compounded Half-Yearly

Worksheet on Compound Interest with Growing Principal

Worksheet on Compound Interest with Periodic Deductions

Worksheet on Variable Rate of Compound Interest

Worksheet on Difference of Compound Interest and Simple Interest



8th Grade Math Practice 

From Uniform Rate of Depreciation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Math Worksheets |3rd Grade Math Sheets|3rd Grade Math Lesson

    Jan 14, 25 02:50 PM

    3rd Grade Math Worksheets
    3rd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  2. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:57 PM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  3. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  4. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  5. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More