Trigonometrical Ratios of some Particular Angles

Trigonometrical ratios of some particular angles i.e., 120°, -135°, 150° and 180° are given below.

1. sin 120° = sin (1 × 90° + 30°) = cos 30° = \(\frac{√3}{2}\);

cos 120° = cos (1 × 90° + 30°) = - sin 30° = - \(\frac{1}{2}\); 

tan 120° = tan (1 × 90° + 30°) = - cot 30° = - √3;

csc 120° = csc (1 × 90° + 30°) = sec 30° = \(\frac{2}{√3}\);

sec 120° = sec (1 × 90° + 30°) = - csc 30° = - 2;

tan 120° = tan (1 × 90° + 30°) = - cot 30° = - √3;

cot 120° = cot (1 × 90° + 30°) = - tan 30° = - \(\frac{1}{√3}\).

2. sin (- 135°)= - sin 135°= - sin (1 × 90°+ 45°) = - cos 45° = - \(\frac{1}{√2}\);

cos (- 135°)= cos 135°= cos (1 × 90°+ 45°) = - sin 45°= - \(\frac{1}{√2}\);

tan (- 135°) = - tan 135° = - tan ( 1 × 90° + 45°) = - (- cot 45°) = 1;

csc (- 135°)= - csc 135°= - csc (1 × 90°+ 45°)= - sec 45° = - √2;

sec (- 135°)= sec 135°= sec (1 × 90°+ 45°)= - csc 45°= - √2;

cot (- 135°) = - cot 135° = - cot ( 1 × 90° + 45°) = - (-tan 45°) = 1.


3. sin 150° = sin (2 × 90° - 30°) = sin 30° = 1/2;

cos 150° = cos (2 × 90° - 30°) = cos 30° = - \(\frac{√3}{2}\);

tan 150° tan (2 × 90° - 30°) = - tan 30° = - \(\frac{1}{√3}\);

csc 150° = csc (2 × 90° - 30°) = csc 30° = 2;

sec 150° = sec (2 × 90° - 30°) = sec 30° = - \(\frac{2}{√3}\);

cot 150° = cot (2 × 90° - 30°) = - cot 300 = - √3.


4. sin 180° = sin (2 × 90° - 0°) = sin 0° = 0;

cos 180° = cos (2 × 90° - 0°) = - cos 0° = - 1;

tan 180° = tan (2 × 90° + 0°) = tan 0° = 0;

csc 180° = csc (2 × 90° - 0°) = csc 0° = Undefined;

sec 180° = sec (2 × 90° - 0°) = - sec 0° = - 1;

cot 180° = cot (2 × 90° + 0°) = cot 0° = Undefined.

 

5. sin 270° = sin (3 × 90° + 0°) = - cos 0° = - 1;

cos 270° = cos (3 × 90° + 0°) = sin 0° = 0;

tan 270° = tan (3 × 90° + 0°) = - cot 0° = Undefined;

csc 270° = csc (3 × 90° + 0°) = - sec 0° = - 1;

sec 270° = sec (3 × 90° + 0°) = csc 0° = Undefined;

cot 270° = cot (3 × 90° + 0°) = - tan 0° = 0.

These trigonometrical ratios of some particular angles (120°, -135°, 150° and 180°) are required to solve various problems.

 Trigonometric Functions





11 and 12 Grade Math

From Trigonometrical Ratios of some Particular Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition of 4-Digit Numbers | 4 Digit Addition Worksheets

    Jan 10, 25 03:02 PM

    Worksheet on Addition of 4-Digit Numbers
    Practice the questions given in the worksheet on addition of 4-digit numbers. Here we will add two 4-digit numbers (without carrying and with carrying) and three 4-digit numbers

    Read More

  2. Word Problems on 4-Digit Numbers |Addition and Subtraction of 4-Digits

    Jan 10, 25 02:49 PM

    Word Problems on 4-Digit Numbers
    We will solve here some of the word problems on addition and subtraction of 4-digit numbers. We will apply the same method while adding and subtracting the word problems. 1. In a village, there are 25…

    Read More

  3. Addition of 10, 100 and 1000 | Adding 10 | Adding 100 | Adding 1000

    Jan 10, 25 01:20 AM

    Adding 10
    Here we will learn Addition of 10, 100 and 1000 with the help of different examples.

    Read More

  4. Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

    Jan 10, 25 12:10 AM

    Estimating the Sum
    We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 09, 25 10:07 PM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More