Trigonometrical ratios of some particular angles i.e., 120°, -135°, 150° and 180° are given below.
1. sin 120° = sin (1 × 90° + 30°) = cos 30° = \(\frac{√3}{2}\);
cos 120° = cos (1 × 90° + 30°) = - sin 30° = - \(\frac{1}{2}\);
tan 120° = tan (1 × 90° + 30°) = - cot 30° = - √3;
csc 120° = csc (1 × 90° + 30°) = sec 30° = \(\frac{2}{√3}\);
sec 120° = sec (1 × 90° + 30°) = - csc 30° = - 2;
tan 120° = tan (1 × 90° + 30°) = - cot 30° = - √3;
cot 120° = cot (1 × 90° + 30°) = - tan 30° = - \(\frac{1}{√3}\).
2. sin (-
135°)= - sin
135°= - sin
(1 × 90°+ 45°)
= - cos 45° = - \(\frac{1}{√2}\);
cos (- 135°)=
cos 135°= cos (1 × 90°+ 45°) =
- sin 45°= - \(\frac{1}{√2}\);
tan (- 135°) = - tan 135° = - tan ( 1 × 90° + 45°) = - (- cot 45°) = 1;
csc (- 135°)= - csc 135°= - csc (1 × 90°+ 45°)= - sec 45° = - √2;
sec (- 135°)=
sec 135°= sec (1 × 90°+ 45°)= -
csc 45°= - √2;
cot (- 135°) = - cot 135° = - cot ( 1 × 90° + 45°) = - (-tan 45°) = 1.
3. sin 150° = sin (2 × 90° - 30°) = sin 30° = 1/2;
cos 150° = cos (2 × 90° - 30°) = cos 30° = - \(\frac{√3}{2}\);
tan 150° tan (2 × 90° - 30°) = - tan 30° = - \(\frac{1}{√3}\);
csc 150° = csc (2 × 90° - 30°) = csc 30° = 2;
sec 150° = sec (2 × 90° - 30°) = sec 30° = - \(\frac{2}{√3}\);
cot 150° = cot (2 × 90° - 30°) = - cot 300 = - √3.
4. sin 180° = sin (2 × 90° - 0°) = sin 0° = 0;
cos 180° = cos (2 × 90° - 0°) = - cos 0° = - 1;
tan 180° = tan (2 × 90° + 0°) = tan 0° = 0;
csc 180° = csc (2 × 90° - 0°) = csc 0° = Undefined;
sec 180° = sec (2 × 90° - 0°) = - sec 0° = - 1;
cot 180° = cot (2 × 90° + 0°) = cot 0° = Undefined.
5. sin 270° = sin (3 × 90° + 0°) = - cos 0° = - 1;
cos 270° = cos (3 × 90° + 0°) = sin 0° = 0;
tan 270° = tan (3 × 90° + 0°) = - cot 0° = Undefined;
csc 270° = csc (3 × 90° + 0°) = - sec 0° = - 1;
sec 270° = sec (3 × 90° + 0°) = csc 0° = Undefined;
cot 270° = cot (3 × 90° + 0°) = -
tan 0° = 0.
These trigonometrical ratios of some particular angles (120°, -135°, 150° and 180°) are required to solve various problems.
● Trigonometric Functions
11 and 12 Grade Math
From Trigonometrical Ratios of some Particular Angles to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Nov 20, 24 01:00 PM
Nov 20, 24 12:50 AM
Nov 20, 24 12:16 AM
Nov 18, 24 02:23 PM
Nov 17, 24 10:29 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.