Processing math: 100%

Trigonometrical Ratios of Complementary Angles

How to find the trigonometrical ratios of complementary angles?

If the sum of two angles is one right angle or 90°, then one angle is said to be complementary of the other. Thus, 25° and 65°; θ° and (90 - θ)° are complementary to each other.

Suppose a rotating line rotates about O in the anti-clockwise sense and starting from its initial position

Trigonometrical Ratios of Complementary Angles

OX traces out angle ∠XOY = θ, where θ is acute. 

Take a point P on OY  and draw ¯PQ  perpendicular to OX.  Let, ∠OPQ = α. Then, we have,

α + θ = 90°

or, α = 90° -  θ.

Therefore, θ and α are complementary to each other.

Now, by the definition of trigonometric ratio,

sin θ = ¯PQ¯OP; ………. (i)

cos θ = ¯OQ¯OP; ………. (ii)

tan θ = ¯PQ¯OQ ………. (iii)

And   sin α = ¯OQ¯OP; ………. (iv)

cos α = ¯PQ¯OP; ………. (v)

tan α = ¯OQ¯PQ  ….… (vi)


From (i) and (iv) we have,

sin α = cos θ   

or,  sin (90° -  θ) = cos θ;


From (ii) and (v) we have,

cos α = sin θ   

or, cos (90° -  θ) = sin θ;


From (iii) and (vi) we have,

And tan α = 1/tan θ

or, tan (90° - θ) = cot θ.


Similarly, csc (90° - θ) = sec θ;

sec (90° - θ) = csc θ

and cot (90° - θ) = tan θ.


Therefore,

Sine of any angle    = cosine of its complementary angle;

Cosine of any angle = sine of its complementary angle;

Tangent of any angle = cotangent of its complementary angle.


Corollary:

Complementary Angles: Two angles are said to be complementary if their sum is 90°. Thus θ and (90° - θ) are complementary angles.

(i) sin (90° -  θ) = cos θ

(iii) tan (90° -  θ) = cot θ

(v) sec (90° -  θ) = csc θ

(ii) cos (90° -  θ) = sin θ

(iv) cot (90° -  θ) = tan θ

(vi) csc (90° -  θ)  = sec θ

We know there are six trigonometrical ratios in trigonometry. The above explanation will help us to find the trigonometrical ratios of complementary angles.


Worked-out problems on trigonometrical ratios of complementary angles:

1. Without using trigonometric tables, evaluate tan65°cot25°

Solution:

tan65°cot25°

= tan65°cot(90°65°)

tan65°tan65°, [Since cot (90° -  θ) = tan θ]

= 1


2. Without using trigonometric tables, evaluate sin 35° sin 55° - cos 35° cos 55°

Solution:

sin 35° sin 55° - cos 35° cos 55°

= sin 35° sin (90° - 35°) - cos 35° cos (90° - 35°),

= sin 35° cos 35° - cos 35° sin 35°,

                                      [Since sin (90° -  θ) = cos θ and cos (90° -  θ) = sin θ]

= sin 35° cos 35° - sin 35° cos 35°

= 0


3.  If sec 5θ = csc (θ - 36°), where 5θ is an acute angle, find the value of θ.

Solution:

    sec 5θ = csc (θ - 36°)

⇒ csc (90° - 5θ) = csc (θ - 36°), [Since sec θ = csc (90° -  θ)]

⇒ (90° - 5θ) = (θ - 36°)

⇒ -5θ - θ = -36° - 90°

⇒ -6θ = -126°

⇒ θ = 21°, [Dividing both sides by -6]

Therefore, θ = 21°


4. Using trigonometrical ratios of complementary angles prove that tan 1° tan 2° tan 3° ......... tan 89° = 1

Solution:

   tan 1° tan 2° tan 3° ...... tan 89°

= tan 1° tan 2° ...... tan 44° tan 45° tan 46° ...... tan 88° tan 89°

= (tan 1° ∙ tan 89°) (tan 2° ∙ tan 88°) ...... (tan 44° ∙ tan 46°) ∙ tan 45°

= {tan 1° ∙ tan (90° - 1°)} ∙ {tan 2° ∙ (tan 90° - 2°)} ...... {tan 44° ∙ tan (90° - 44°)} ∙ tan 45°

= (tan 1° ∙ cot 1°)(tan 2° ∙ cot 2°) ...... (tan 44° ∙ cot 44°) ∙ tan 45°, [Since tan (90° - θ) = cot θ]

= (1)(1) ...... (1) ∙ 1, [since tan θ ∙ cot θ = 1 and tan 45° = 1]

= 1

Therefore, tan 1° tan 2° tan 3° ...... tan 89° = 1

 Trigonometric Functions






11 and 12 Grade Math

From Trigonometrical Ratios of Complementary Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade BODMAS Rule Worksheet | PEMDAS | Order of operations|Answers

    Apr 03, 25 03:11 PM

    5th Grade BODMAS Rule Worksheet
    In 5th Grade BODMAS Rule Worksheet you will get different types of problems on mathematical expressions involving different operations, mathematical expression with 'brackets' and 'of' and simplifying…

    Read More

  2. Worksheet on Simplification | Simplify Expressions | BODMAS Questions

    Apr 03, 25 02:58 PM

    Worksheet on Simplification
    In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

    Read More

  3. Divisible by 2 Video |Test of Divisibility by 2 Trick| Rules| Examples

    Apr 03, 25 10:25 AM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More

  4. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Apr 03, 25 10:22 AM

    What is BODMAS Rule in Math?
    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  5. Before and After Video | Math Worksheets on Number | Before and After

    Apr 03, 25 12:44 AM

    before and after number worksheet
    Free math worksheets on numbers before and after help the kids to check how much they are good at numbers. The purpose of this math activity is to help your child to say a number in order and also hel

    Read More