Trigonometrical Ratios of Complementary Angles

How to find the trigonometrical ratios of complementary angles?

If the sum of two angles is one right angle or 90°, then one angle is said to be complementary of the other. Thus, 25° and 65°; θ° and (90 - θ)° are complementary to each other.

Suppose a rotating line rotates about O in the anti-clockwise sense and starting from its initial position

Trigonometrical Ratios of Complementary Angles

\(\overrightarrow{OX}\) traces out angle ∠XOY = θ, where θ is acute. 

Take a point P on \(\overrightarrow{OY}\)  and draw \(\overline{PQ}\)  perpendicular to OX.  Let, ∠OPQ = α. Then, we have,

α + θ = 90°

or, α = 90° -  θ.

Therefore, θ and α are complementary to each other.

Now, by the definition of trigonometric ratio,

sin θ = \(\frac{\overline{PQ}}{\overline{OP}}\); ………. (i)

cos θ = \(\frac{\overline{OQ}}{\overline{OP}}\); ………. (ii)

tan θ = \(\frac{\overline{PQ}}{\overline{OQ}}\) ………. (iii)

And   sin α = \(\frac{\overline{OQ}}{\overline{OP}}\); ………. (iv)

cos α = \(\frac{\overline{PQ}}{\overline{OP}}\); ………. (v)

tan α = \(\frac{\overline{OQ}}{\overline{PQ}}\)  ….… (vi)


From (i) and (iv) we have,

sin α = cos θ   

or,  sin (90° -  θ) = cos θ;


From (ii) and (v) we have,

cos α = sin θ   

or, cos (90° -  θ) = sin θ;


From (iii) and (vi) we have,

And tan α = 1/tan θ

or, tan (90° - θ) = cot θ.


Similarly, csc (90° - θ) = sec θ;

sec (90° - θ) = csc θ

and cot (90° - θ) = tan θ.


Therefore,

Sine of any angle    = cosine of its complementary angle;

Cosine of any angle = sine of its complementary angle;

Tangent of any angle = cotangent of its complementary angle.


Corollary:

Complementary Angles: Two angles are said to be complementary if their sum is 90°. Thus θ and (90° - θ) are complementary angles.

(i) sin (90° -  θ) = cos θ

(iii) tan (90° -  θ) = cot θ

(v) sec (90° -  θ) = csc θ

(ii) cos (90° -  θ) = sin θ

(iv) cot (90° -  θ) = tan θ

(vi) csc (90° -  θ)  = sec θ

We know there are six trigonometrical ratios in trigonometry. The above explanation will help us to find the trigonometrical ratios of complementary angles.


Worked-out problems on trigonometrical ratios of complementary angles:

1. Without using trigonometric tables, evaluate \(\frac{tan  65°}{cot  25°}\)

Solution:

\(\frac{tan  65°}{cot  25°}\)

= \(\frac{tan  65°}{cot (90°  -  65°)}\)

=  \(\frac{tan   65°}{tan  65°}\), [Since cot (90° -  θ) = tan θ]

= 1


2. Without using trigonometric tables, evaluate sin 35° sin 55° - cos 35° cos 55°

Solution:

sin 35° sin 55° - cos 35° cos 55°

= sin 35° sin (90° - 35°) - cos 35° cos (90° - 35°),

= sin 35° cos 35° - cos 35° sin 35°,

                                      [Since sin (90° -  θ) = cos θ and cos (90° -  θ) = sin θ]

= sin 35° cos 35° - sin 35° cos 35°

= 0


3.  If sec 5θ = csc (θ - 36°), where 5θ is an acute angle, find the value of θ.

Solution:

    sec 5θ = csc (θ - 36°)

⇒ csc (90° - 5θ) = csc (θ - 36°), [Since sec θ = csc (90° -  θ)]

⇒ (90° - 5θ) = (θ - 36°)

⇒ -5θ - θ = -36° - 90°

⇒ -6θ = -126°

⇒ θ = 21°, [Dividing both sides by -6]

Therefore, θ = 21°


4. Using trigonometrical ratios of complementary angles prove that tan 1° tan 2° tan 3° ......... tan 89° = 1

Solution:

   tan 1° tan 2° tan 3° ...... tan 89°

= tan 1° tan 2° ...... tan 44° tan 45° tan 46° ...... tan 88° tan 89°

= (tan 1° ∙ tan 89°) (tan 2° ∙ tan 88°) ...... (tan 44° ∙ tan 46°) ∙ tan 45°

= {tan 1° ∙ tan (90° - 1°)} ∙ {tan 2° ∙ (tan 90° - 2°)} ...... {tan 44° ∙ tan (90° - 44°)} ∙ tan 45°

= (tan 1° ∙ cot 1°)(tan 2° ∙ cot 2°) ...... (tan 44° ∙ cot 44°) ∙ tan 45°, [Since tan (90° - θ) = cot θ]

= (1)(1) ...... (1) ∙ 1, [since tan θ ∙ cot θ = 1 and tan 45° = 1]

= 1

Therefore, tan 1° tan 2° tan 3° ...... tan 89° = 1

 Trigonometric Functions






11 and 12 Grade Math

From Trigonometrical Ratios of Complementary Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Nov 20, 24 01:00 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. 2nd Grade Measurement Worksheet | Measuring Length, Mass and Volume

    Nov 20, 24 12:50 AM

    In 2nd Grade Measurement Worksheet you will get different types of questions on measurement of length, measurement of weight (mass), measurement of capacity (volume), addition of length, addition of w…

    Read More

  3. 2nd Grade Fractions Worksheet | Basic Concept of Fractions | Answers

    Nov 20, 24 12:16 AM

    Divide the Collection into 4 Equal Parts
    In 2nd Grade Fractions Worksheet we will solve different types of problems on fractions, one-whole, one-half, one-third, one-fourth, three-fourth or s quarter. In a fraction, it is important that the…

    Read More

  4. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 18, 24 02:23 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  5. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 17, 24 10:29 PM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More