Trigonometrical Ratios of any Angle

We will learn how to find the trigonometrical ratios of any angle using the following step-by-step procedure.

Step I: To find the trigonometrical ratios of angles (n ∙ 90° ± θ); where n is an integer and θ is a positive acute angle, we will follow the below procedure.

First we need to determine the sign of the given trigonometrical ratio. Now to determine the sign of the given trigonometrical ratio we need to find the quadrant in which the angle (n ∙ 90° + θ) or (n ∙ 90° - θ) lies.

Now, using the rule “All, sin, tan, cos” we will find the sign of the given trigonometrical ratio.Therefore,

(i) All trigonometrical ratios are positive if the given angle (n ∙ 90° + θ) or (n .90° + θ) lies in the I quadrant (first quadrant);

(ii) Only sin and csc ratios is positive if the given angle (n ∙ 90° + θ) or (n ∙ 90° - θ) lies in the II quadrant (second quadrant);

(iii) Only tan and cot ratios is positive if the given angle (n ∙ 90° + θ) or (n ∙ 90° - θ) lies in the III quadrant (third quadrant);

(iv) Only cos and sec ratios is positive if the given angle (n ∙ 90° + θ) or (n ∙ 90° - θ) lies in the IV quadrant (fourth quadrant).


Step II: Now determine whether n is an even or odd integer.

(i) If n is an even integer the form of the given trigonometrical ratio will remain the same i.e.,

sin (n ∙ 90° + θ) = sin θ

sin (n ∙ 90° - θ) =  - sin θ;


cos (n ∙ 90° + θ) = cos θ;

cos (n ∙ 90° - θ) = - cos θ;


tan (n ∙ 90° + θ) = tan θ;

tan (n ∙ 90° - θ) = - tan θ.

csc (n ∙ 90° + θ) = csc θ

csc (n ∙ 90° - θ) =  - csc θ;


sec (n ∙ 90° + θ) = sec θ;

sec (n ∙ 90° - θ) = - sec θ;


cot (n ∙ 90° + θ) = cot θ;

cot (n ∙ 90° - θ) = - cot θ.


(ii) If n is an odd integer then the form of the given trigonometrical ratio is altered i.e.,

sin changes to cos;

i.e., sin (n ∙ 90° + θ) = cos θ

or, sin (n ∙ 90° - θ) = - cos θ

csc changes to sec;

i.e., csc (n ∙ 90° + θ) = sec θ

or, csc (n ∙ 90° - θ) = - sec θ

cos changes to sin;

i.e., cos (n ∙ 90° + θ) = sin θ

or, cos (n ∙ 90° - θ) = - sin θ

sec changes to csc;

i.e., sec (n ∙ 90° + θ) = csc θ

or, sec (n ∙ 90° - θ) = - csc θ

tan changes to cot;

i.e., tan (n ∙ 90° + θ) = cot θ

or, tan (n ∙ 90° - θ) = - cot θ

cot changes to tan;

i.e., cot (n ∙ 90° + θ) = tan θ

or, cot (n ∙ 90° - θ) = - tan θ

 Trigonometric Functions






11 and 12 Grade Math

From Trigonometrical Ratios of any Angle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 09:48 AM

    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  2. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More

  3. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Jan 12, 25 08:41 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  4. 3rd Grade Addition Worksheet | 3-Digit Addition | Word Problems | Ans

    Jan 11, 25 01:06 PM

    3rd Grade Addition Games
    In 3th Grade Addition Worksheet we will solve how to addition of 3-digit numbers without regrouping, addition of three 3-digit numbers without regrouping, addition of 3-digit numbers with regrouping…

    Read More

  5. Addition of 4-Digit Numbers | 4-Digit Addition |Adding 4-Digit Numbers

    Jan 11, 25 03:16 AM

    Addition of 4-Digit Numbers
    We will learn about the addition of 4-digit numbers (without carrying and with carrying). We know how to add 2 or 3, 3-digit numbers without carrying or with carrying.

    Read More